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Chapter 1


Introduction


Points on elliptic curves have a natural addition operation on them which allows us to


study their arithmetic as well as their geometry. Higher genus curves unfortunately do not


have such a natural structure. We can, however, define a variety associated to each curve


which has a natural group structure, called the Jacobian variety of the curve, and we can


use it to study properties of the curve. Like other algebraic structures, Jacobian varieties


may decompose into the product of varieties of smaller dimension. Information about


the Jacobian varieties (and the curves associated to them) may be found by studying


these smaller varieties. In the other direction, we may be able to determine if an elliptic


curve has a particular property (if it has certain torsion, which isogeny class it is in, if


it is a Q-curve, etc.) by observing it as a factor in the Jacobian decomposition of some


curve.


A new intractable math problem that may be useful in cryptography is called the


vector decomposition problem. Besides watermarking, the only suggested protocol for


this problem uses a one dimensional family of genus 2 curves, over a finite field, whose


Jacobians decompose into the product of two elliptic curves [7]. This problem can be


generalized to higher dimension and in this case families of higher genus curves with


Jacobians that decompose in special ways could be used in a protocol for the higher


dimensional problem [8].


In [9], Ekedahl and Serre exhibit curves over C of various genera g up to 1297 whose
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Jacobians decompose completely into the product of g elliptic curves (possibly non-


isogenous). A related question is


Question 1. For which genus g can we find a curve X of that genus such that the Jacobian


of that curve JX is isogenous to the product of g copies of one elliptic curve E?


For curves over a field of characteristic p, partial positive answers to Question 1 are


already known. For example, let r = pk and consider the curve X : xr+1 +yr+1 +zr+1 = 0


over the algebraic closure of Fp. For each k the Jacobian variety of this curve is isogenous


to Eg for some elliptic curve E where g is the genus of this curve, g = r(r − 1)/2.


If we cannot find a curve which positively answers Question 1 for a certain genus


, we would like to know the bound on the number of isogenous elliptic curves in the


decompositions of curves of that genus.


Question 2. Given a fixed genus g, what is the largest possible integer t such that t copies


of an elliptic curve E appear in the decomposition of JX for some curve X of genus g?


As we mentioned above, elliptic curves have a natural group structure on their points.


In particular, over any number field K, the Mordell-Weil Theorem says that the points of


E over K, denoted E(K), are a finitely generated abelian group. So E(K) ∼= Zr×Etors(K)


where Etors(K) is the torsion part of the group and r is called the rank of the elliptic


curve. It is still an open question if ranks of elliptic curves over the rational numbers are


bounded. Even over number fields, there are many open questions about ranks of elliptic


curves. (As of publication of this thesis, the largest known rank of an elliptic curve over


Q was rank 28, [10].) Ranks of elliptic curves come up in several very important number


theory conjectures (such as the Birch and Swinnerton-Dyer conjecture). See [26] for a


nice introduction and overview of ranks and their applications.


Answers to the questions we pose above have implications for ranks of elliptic curves.


In some cases, if we know the Jacobian of a curve contains a certain number of copies of


E we can find a non-trivial lower bound on the rank of E over certain number fields.
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As an example, in Chapter 3 we demonstrate a hyperelliptic curve X : y2 = f(x)


whose Jacobian is isogenous to E4 × E2 for E and E2 elliptic curves which gives a map


φ : X → E4. Since X is a hyperelliptic curve, there are many quadratic extensions


K of Q such that X has points over K; simply fix any s ∈ Q and consider the field


K = Q(
√


f(s)). We pick one such extension and a point P ∈ X(K). The image of P


under φ is (P1, P2, P3, P4) in E4(K). We can check that the Pi are all linearly independent


(see [25]) which means over many number fields E has rank at least 4.


Similarly, in Chapter 4 we find a curve of genus 4 whose Jacobian is isogenous to E4


for some elliptic curve E. This curve is not hyperelliptic. However, all non-hyperelliptic


genus 4 curves admit a degree-3 map to P1 and so similar arguments to those in the


previous paragraph show that E has rank 4 over many cubic extensions of Q.


In this thesis we find non-trivial values of t from Question 2 for low genus curves


(genus 10 and below) defined over an algebraically closed field of characteristic zero.


We demonstrate curves up to genus 6 which positively answer Question 1 and find non-


trivial lower bounds for t in curves of genus up to 10. Summaries of these results may


be found in Table 4.1 in Chapter 4. We also decompose Jacobians of many genus 3 and


4 hyperelliptic curves based on the curves’ automorphism groups. These results may be


found in Table 3.1 and Table 3.2 in Chapter 3.
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Chapter 2


Background Materials


2.1 Curves and Their Jacobians


Throughout a curve will be a smooth projective variety of dimension 1. We fix a field


k with an algebraic closure k and polynomial ring k[x, y]. When we write a curve as an


affine variety X defined by an equation f(x, y)=0, we really mean the projective closure


of this variety.


Let K(X) be the quotient field of k[x, y]/〈f(x, y)〉 (similarly K(X) is the quotient


field of k[x, y]/〈f(x, y)〉). K(X) is called the function field of the curve X. A non-


constant map of curves φ : X → Y induces an injection on these curves’ function fields


φ∗ : K(Y ) → K(X). Hence K(X) is a finite extension of φ∗(K(Y )). We call the degree of


this extension the degree of φ. Our techniques will require using the automorphism


group of a curve which is the automorphisms of K(X) which fix k, Aut(K(X), k). This


will be a finite group for any curve of genus g > 1 (see Theorem 1 for the definition of


genus). Geometrically automorphisms of a curve are maps on the points. As an example,


take the curve y2 = x6 + x3 + 1. One automorphism of this curve sends x to ζ3x (ζ3 a


cube root of unity) and fixes y, while another automorphism sends x to 1/x and sends y


to y/x3.


The divisor group of a curve X over k, Div(X), is the free abelian group on the


points of the curve. The divisors of degree zero are those whose coefficients sum to zero


4







and they form a subgroup denoted Div0(X). If X is defined over an arbitrary field k then


Divk(X) is the subgroup of Div(X) fixed by the absolute Galois group Gk/k and similarly


for Div0
k(X).


We define a partial ordering on Div(X) by saying that, for Di ∈ Div(X), D1 ≥ D2


when D1 −D2 has only positive coefficients.


For elements h ∈ K(X), we can define a divisor div(h) as


∑
P∈X


ordP (h)[P ].


Divisors that may be written as div(h) for some h ∈ K(X) are called principal divisors.


If h ∈ K(X) then div(h) ∈ DivK(X). There is an equivalence relation on divisors defined


as D1 ∼ D2 when D1−D2 is a principal divisor. The divisor group of a curve quotiented


out by this relation is called the Picard group of the curve. The class of elements in the


Picard group which come from divisors of the form div(ω) (ω a differential form on X)


is called the canonical divisor class.


Let L(D) be the finite dimensional k-vector space {h ∈ K(X)× : div(h) ≥ −D}∪{0}


whose dimension we denote by l(D). With notation as defined above, we can state an


important theorem/definition.


Theorem 1 (Riemann-Roch). Given a curve X, and a canonical divisor KX , there


exists an integer g ≥ 0 such that for all D ∈ Div(X)


l(D)− l(KX −D) = deg D − g + 1.


We call g the genus of the curve X.


Elliptic curves are curves of genus 1 with a specific basepoint. If the characteristic


of k is not 2 or 3, elliptic curves may be given by the equation y2 = x3 + Ax + B with


A and B in k. Hyperelliptic curves are curves which admit a morphism ω of degree
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2 to a genus 0 curve. If the curve is considered over an algebraically closed field, a


hyperelliptic curve may also be thought of as the non-singular model of y2 = f(x) for


some polynomial f ∈ k[x] with nonzero discriminant and of degree d. The genus of a


hyperelliptic curve in this case is given by bd−1
2
c. In particular, hyperelliptic curves over


k always have a non-trivial automorphism that sends y to −y and fixes x. This is called


the hyperelliptic involution and corresponds to ω.


Elliptic curves have a natural group structure on their points. Unfortunately, most


higher genus curves have no such structure. In lieu of such structure, we define a variety


associated to a curve that does have a natural group structure.


Definition. The Jacobian variety JX of a curve X is a variety with a group structure


corresponding to the group Div0(X)/ ∼ .


Jacobian varieties and elliptic curves are particular types of abelian varieties (varieties


with a group structure and special identity point). The questions we pose in Chapter


1 involve questions about isogenous elliptic curves. An isogeny, denoted by ∼, is a


surjective homomorphism between abelian varieties of the same dimension.


It turns out that the tangent space of JX at the point which is identified with the


identity element of the group structure is isomorphic to H1(X,OX) which has dimension


g. This leads to the following proposition which we will make use of later.


Proposition 1. If X is a curve of genus g then JX has dimension g.


We will also talk about the quotient of a curve by a subgroup of its automorphism


group G. This is the curve formed by the orbits of the points of the curve under the


action of the subgroup.


Proposition 2. Suppose H1 and H2 are subgroups of G = Aut(X) that are conjugates


of each other. Then X/H1
∼= X/H2.
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Proof. Fix g ∈ G such that gH1g
−1 = H2. The action of g induces an isomorphism


K(X)H1 → K(X)H2 . Also, K(X)Hi ∼= K(X/Hi) and so X/H1 and X/H2 have isomor-


phic function fields, hence are isomorphic curves.


2.2 Techniques


To answer the questions from Chapter 1 we will decompose the Jacobians of curves and


then evaluate the factors that appear in these decompositions to find many isogenous


elliptic curves. Below we discuss ways to decompose Jacobians of curves. In later chapters


we explain how to evaluate the factors that appear in these decompositions.


Given a curve X and a group G ≤ Aut(X), idempotent relations in Q[G] lead to idem-


potent relations in End0(JX)=End(JX)⊗ZQ under the canonical map of Q-algebras from


Q[G] to End0(JX), which we will denote by e. The following result of Kani and Rosen


[17] shows that these relations in turn lead to isogeny relations among the images of JX


under these idempotent endomorphisms. First we define what it means for two idem-


potents in End0(JX) to be equivalent. Note that since End0(JX) is a finite dimensional


Q-algebra we can define irreducible representations of the algebra to be the irreducible


End0(JX)-modules and the irreducible characters are then defined by the corresponding


trace maps.


Definition. For εi ∈ End0(JX), we say that ε1 ∼ ε2 if χ(ε1) = χ(ε2) for all virtual


Q-characters χ of End0(JX).


Theorem 2 (Theorem A, [17]). Let ε1, . . . , εn, ε
′
1, . . . , ε


′
m ∈ End0(JX) be idempotents.


Then the idempotent relation


ε1 + · · ·+ εn ∼ ε′1 + · · ·+ ε′m


7







holds in End0(JX) if and only if we have the isogeny relation


ε1(JX) + · · ·+ εn(JX) ∼ ε′1(JX) + · · ·+ ε′m(JX).


If we can find idempotent relations in Q[G] which involve the identity of the group


ring, applying Theorem 2 will produce an isogeny relation among JX itself and images of


JX under various endomorphisms. By evaluating these images, we find a decomposition


of JX . In Chapter 3 we find relations among idempotents that are derived from subgroups


of G. These decompositions have factors that are easy to evaluate (they are Jacobians


of quotient curves) yet we cannot find these idempotent relations for every group which


appears as the automorphism group of some curve. In Chapter 4 we find idempotent


relations using the Wedderburn decomposition of the group ring Q[G]. These idempotent


relations exist for all groups but the factors of the Jacobians that we obtain are not as


easy, in general, to evaluate. In Chapter 5 we discuss work of Artin and others which, in


the case of curves over finite fields, gives an alternative way to decompose Jacobians of


curves.


We have also attached an appendix with lists of automorphism groups of families of


hyperelliptic curves of genus 3 and 4 which are used in Chapter 3. The appendix includes


data about models of these curves and the generators for their automorphism groups.


2.3 Convention and Notation


We denote the cyclic group and dihedral group of order n as Cn and Dn, respectively.


The group Dn (defined for n even) is generated by elements r and s of orders n/2 and 2,


respectively. The group Un is given by generators and relations 〈a, b | a2, b2n, ababn+1〉,


the group Vn is 〈a, b | a4, bn, (ab)2, (a−1b)2〉, and the group Hn is 〈a, b | a4, b2a2, (ab)n〉.


We let ζn denote a primitive n-th root of unity and Ei denote elliptic curves.
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Chapter 3


Jacobian Decomposition:
Idempotents via Subgroups


Suppose we have a curve X and group G ≤ Aut(X). In this chapter we decompose the


Jacobians of certain curves using idempotents of the form


εH =
1


|H|
∑
h∈H


h


where H ≤ G. As we will see, these idempotents provide decompositions with factors


that are easy to evaluate. However, not all groups have non-trivial relations among these


idempotents.


3.1 Idempotent Relations


We demonstrate relations among idempotents of the form εH with a simple example.


Suppose X is a curve with automorphism group containing the group G = C2×C2. (For


instance, the hyperelliptic curve y2 = x2g+2 + α1x
2g + α2x


2g−2 + · · ·+ αgx
2 + 1, αi ∈ k of


genus g has such an automorphism group.)


Let the three subgroups of G of order 2 be denoted Hi = 〈hi〉. We have the following
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equation in Q[G]


1 · 1G + 2 · 1


4
(1G + h1 + h2 + h3) =


1


2
(1G + h1) +


1


2
(1G + h2) +


1


2
(1G + h3).


This gives us the idempotent relation


ε1G
+ 2εG = εH1 + εH2 + εH3 . (3.1)


We now apply the canonical map of Q-algebras from Q[G] to End0(JX) to the idempotent


relation above to get an idempotent relation in End0(JX). Recall we denote this map as


e and the image of g ∈ G under e is the pushout of divisor classes, g∗. We will show that


e(εH)JX ∼ JX/H and thus (3.1) translates into the isogeny relation


JX × J2
X/G ∼ JX/H1 × JX/H2 × JX/H3 . (3.2)


Given a quotient map of curves, φH : X → X/H the degree of this map deg(φH) =


|H|. We let φ∗H and φH∗ represent the pullback of JX/H to JX and the pushout of JX to


JX/H , respectively. Also, if D ∈ Div(X), then φ∗HφH∗(D) =
∑


h∈H h∗(D). Putting these


facts together, gives us


e(εH)JX = e


(
1


|H|
∑
h∈H


h


)
JX =


1


|H|


(∑
h∈H


h∗


)
JX =


1


deg(φH)
φ∗HφH∗(JX) ∼ φ∗H(JX/H) ∼ JX/H .


We can compute examples like this for many other groups. In general, we have the


following theorem.


Theorem 3 (Kani and Rosen, [17]). Given a curve X, let G ≤Aut(X) be a finite


group such that G = H1 ∪ · · · ∪Hs where the subgroups Hi ≤ G satisfy Hi ∩Hj = 1G if
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i 6= j. Then we have the following isogeny relation


Js−1
X × Jg


X/G ∼ Jh1


X/H1
× · · · × Jhs


X/Hs


where g = |G| and hi = |Hi| and Jm means the product of J with itself m times.


For a more general statement of Theorem 3 in general additive Q-linear categories,


see Remark 2 in [6].


A group G satisfying the assumptions of Theorem 3 is said to have a partition.


One word of caution: not all groups have a partition and so our results exclude some


curves. For instance, in genus 4, the family of curves y2 = x(x4 − 1)(x4 + αx2 + 1) has


automorphism group the quaternion group of order 8. Since all non-trivial subgroups


of this group contain the subgroup of order 2, there are no non-trivial relations on the


idempotents εH and so this technique cannot be used to find factors in the decomposition


of these curves.


3.2 Evaluating the Factors of the Jacobians


Once we have an isogeny relation between the Jacobian of the curve and the product of


Jacobians of some of its quotient curves, we use the following well known result, along


with Propositions 1 and 2 from Chapter 2, to determine the structure of these factors.


Theorem 4 (Hurwitz). Given a non-constant separable map φ : X → Y of smooth


curves over k, let eφ(P ) be the ramification index of φ at P , then


2gX − 2 = (deg φ)(2gY − 2) +
∑
P∈X


(eφ(P )− 1).


Depending on the particular curve, we may use these results in a variety of ways.
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• Suppose a curve X has an automorphism group that contains the group G and


that H is one of the subgroups from Theorem 3. We apply Theorem 4 to the map


φH : X 7→ X/H (recall this map has degree |H|) to determine the genus of X/H which


gives us, by Proposition 1, the dimension of one factor of the Jacobian of X.


In order to apply Theorem 4 we must be able to determine eφ(P ) for every point P at


which φH is ramified. We use the fixed points of the automorphism σ to determine these


values. See Hartshorne ([14], ex. 4.2.5) for the relation between ramification and fixed


points.


• Sometimes we have an isogeny relation from Theorem 3 involving a power of the


Jacobian we would like to decompose. For instance, if the automorphism group of a curve


contains the group 〈a, b〉 ∼= C2 × C2, Theorem 3 produces the following isogeny


J2
X × J4


X/〈a,b〉 ∼ J2
X/〈a〉 × J2


X/〈b〉 × J2
X/〈ab〉. (3.3)


However we are interested in how the Jacobian of the curve itself decomposes. To rectify


this situation we apply Poincaré’s complete reducibility theorem to (3.3) to get


JX × J2
X/〈a,b〉 ∼ JX/〈a〉 × JX/〈b〉 × JX/〈ab〉. (3.4)


• Finally, the isogeny relation in Theorem 3 must have equal total dimensions on


both sides so we may also use dimension arguments to find the dimension of some of the


factors if others are known.


3.3 Results


Automorphism groups of genus 2 curves were classified by Igusa [16], [15] and decompo-


sitions of the Jacobians of these curves have already been studied [13]. For higher genus
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hyperelliptic curves all possible automorphism groups have also been classified [3], [27].


We therefore begin by applying the preceding techniques to the list of groups which are


automorphism groups of hyperelliptic curves of genus 3 and 4.


The Jacobian decompositions we find will work for any curve of the given genus


with automorphism group containing the group we list, regardless of field of definition.


However, in many of the subsections we compute the elliptic curves that show up as


factors in these decompositions. For this data we are assuming the curve is a hyperelliptic


curve over an algebraically closed field with model as listed in Appendix A.


3.3.1 Genus 3


Theorem 5. If X is a genus 3 curve with automorphism group containing one of the


groups in the first column of Table 3.1, then JX decomposes as in the second column of


this table where Y is a genus 2 curve and Ei some elliptic curve.


G Jacobian Decomposition
C2 × C2 E × JY


D4 × C2 E1 × E2 × E3


H2 E1 × E2
2


U2 E1 × E2
2


D12 E2
1 × E2


D8 × C2 E2
1 × E2


U6 E2
1 × E2


V8 E2
1 × E2


S4 × C2 E3


Table 3.1: Genus 3 Jacobian Decompositions


In most genus 3 cases, we obtain the finest decomposition by looking at a subgroup


of the automorphism group which is isomorphic to C2 × C2 = 〈a, b〉. When b = ω is the


hyperelliptic involution and a any other involution (3.4) can be reduced to


JX ∼ JX/〈a〉 × JX/〈ab〉. (3.5)
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Proposition 1 says that JX has dimension 3 which means that one of the factors on


the right side of (3.5) must be a genus one curve while the other must be the Jacobian


of a genus 2 curve. Since this is true for any involution a other than the hyperelliptic


involution we have proven


Theorem 6. If X is a hyperelliptic curve of genus 3 with extra involutions, half the


quotients of involutions are elliptic curves and the other half are genus 2 curves (excepting


the hyperelliptic involution).


We now prove Theorem 5 for each possible group listed in Table 3.1.


C2 × C2


Any curve X whose full automorphism group G is isomorphic to C2 × C2 has only two


non-hyperelliptic involutions. By Theorem 6 one quotient must be of genus one and one


must be of genus two. (We can also see this by applying Theorem 4 and information


about the fixed points of each automorphism.) Thus JX ∼ E×JY for some elliptic curve


E and a genus 2 curve Y .


D4 × C2


D4 × C2 has subgroups isomorphic to C2 × C2. Unlike our previous case, however, there


are subgroups of this form which do not contain the hyperelliptic involution and so we


are able to get more information about the Jacobian of this curve. Suppose we take one


subgroup 〈a, c〉. Theorem 3 then produces


JX × J2
X/〈a,c〉 ∼ JX/〈a〉 × JX/〈c〉 × JX/〈ac〉.


Considering fixed points and using Theorem 4, each quotient on the right has genus one


and so JX ∼ E1 × E2 × E3 for three elliptic curves.
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C4 × C2


Both U2 and H2 are isomorphic to C4 × C2. This group has a subgroup isomorphic to


C2 × C2 which contains the hyperelliptic involution. Thus as with the C2 × C2 family,


JX ∼ E1×JY for some elliptic curve E1 and a genus 2 curve Y . We compute the quotient


curve Y and find that its automorphism group is isomorphic to D8. In [13], Gaudry and


Schost show that genus 2 curves with this automorphism group have Jacobians that


decompose into the product of two elliptic curves which are 2-isogenous to each other


and so JC ∼ E1 × E2
2 .


D8 × C2


The group D8×C2 has a subgroup, not containing the hyperelliptic involution, isomorphic


to C2 ×C2 which gives us the following isogenous relation (1C2 is the identity element in


C2):


JX × J2
X/〈(s,1C2


),(r2,1C2
)〉 ∼ JX/〈(s,1C2


)〉 × JX/〈(r2,1C2
)〉 × JX/〈(sr2,1C2


)〉. (3.6)


All three curves on the right side of (3.6) are of genus 1. Thus, X/〈(s, 1C2), (r
2, 1C2)〉


must be of genus 0. Furthermore, two of the curves on the right are isomorphic to each


other, since their automorphisms are in the same conjugacy class (Proposition 2). Hence


JX ∼ E2
1 ×E2 where for α ∈ k, E1 is isomorphic to the curve y2 = x4− 4x2 + (2 + α) via


the mapping (x, y) → (x + 1
x
, y


x2 ) and E2 is isomorphic to the curve y2 = x4 + αx2 + 1


via the mapping (x, y) → (x2, y).


D12


The group D12 has a subgroup isomorphic to S3 generated by s and r2. Theorem 3


produces


J3
X × J6


X/〈r2,s〉 ∼ J3
X/〈r2〉 × J2


X/〈s〉 × J2
X/〈sr2〉 × J2


X/〈sr4〉. (3.7)
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The last 3 curves on the right are isogenous by Proposition 2 and so (3.7) may be rewritten


as


J3
X × J6


X/〈r2,s〉 ∼ J3
X/〈r2〉 × J6


X/〈s〉. (3.8)


By applying Poincaré’s complete reducibility theorem to (3.8) we reduce the exponents


JX × J2
X/〈r2,s〉 ∼ JX/〈r2〉 × J2


X/〈s〉. (3.9)


Both curves on the right side of (3.9) are genus 1 and so X/〈r2, s〉 is genus 0. Thus


JX is isogenous to the product of three elliptic curves, two of which are isogenous. We


can explicitly compute these elliptic curves. Any curve of genus 3 with automorphism


group containing D12 is isomorphic to a curve of the form y2 = x (x6 + αx3 + 1) for


some α ∈ k. X/〈s〉 is isomorphic to the curve y2 = x3 − 3x + α which has j invariant


6912/(4 − α2) while X/〈r2〉 is isomorphic to y2 = x3 + αx2 + x which has j-invariant


256(α2 − 3)3/(α2 − 4). The corresponding quotient maps are given by


(x, y) →
(


x


(x + 1)2
,


y


(x + 1)4


)


(x, y) → (x3, xy).


U6


Up to isomorphism, there is only one curve with automorphism group isomorphic to U6.


As with D12, U6 has a subgroup isomorphic to S3, generated by a and b4. We use similar


computations as those in D12 above to get


JX × J2
X/〈a,b4〉 ∼ JX/〈b4〉 × J2


X/〈a〉 (3.10)
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and conclude from (3.10) that JX ∼ E2
1 ×E2. The corresponding quotient maps for these


curves are given by


(x, y) →
(


x− 1


x
,


y


x2


)
(x, y) → (x3, xy).


We compute these elliptic curves and find they are isomorphic to y2 = x3 + 3x and


y2 = x3 − x, both of which have j-invariant 1728 and so, if we consider the curves over


C, these curves are isomorphic. Hence JX ∼ E3 over C. Moreover, if we consider a curve


with this automorphism group over the field Q(s) where s = (−3)1/4, we may define an


isomorphism from E2 to E1 by sending (x, y) to (s2x, s3y).


V8


The group V8 is the automorphism group of one curve of genus 3, up to isomorphism and


once more we look at a certain subgroup isomorphic to C2 × C2:


JX × J2
X/〈a3b,b4〉 ∼ JX/〈a3b〉 × JX/〈a3b5〉 × JX/〈b4〉. (3.11)


Each of the quotient curves on the right side of (3.11) has genus 1 and therefore JX


must be isogenous to three elliptic curves. In fact, since a3b and a3b5 are in the same


conjugacy class in V8, the elliptic curves which are the quotients of the original curve


by each of these are isogenous (by Proposition 2). Hence JX ∼ E2
1 × E2. When we


quotient out by b4 we get the genus 1 curve y2 = x4− 1 which is isomorphic to the curve


y2 = x3 + 4x. The j-invariant of this curve is 1728. Quotienting out by a3b produces the


curve y2 = x4 − 4ζ7
8x


2 − 2i which has j-invariant 8000.
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S4 × C2


There is only one curve, up to isomorphism, with automorphism group S4 × C2, the


curve X : y2 = x8 +14x4 +1. Applying Theorem 3 to one particular subgroup of S4×C2


isomorphic to C2 × C2 gives


JX ∼ JX/〈((12)(34),1C2
)〉 × JX/〈((13)(24),1C2


)〉 × JX/〈((14)(23),1C2
)〉. (3.12)


All the subgroups on the right side of (3.12) are conjugates and so by Proposition 2


we get JX ∼ E3. This positively answers Question 1 for genus 3. This elliptic curve


is y2 = x4 + 14x2 + 1 which has j-invariant 35152/9 and is isogenous to X0(24). This


particular case was also demonstrated in [18] using different techniques.


3.3.2 Genus 4


As with the genus 3 cases, all the automorphism groups of genus 4 curves which we


consider have subgroups isomorphic to C2×C2. Again, if b is the hyperelliptic involution


and a any other involution we can reduce (3.4) to


JX ∼ JX/〈a〉 × JX/〈ab〉. (3.13)


By Proposition 1, JX has dimension 4 which means that both of the factors on the


right side of (3.13) must be Jacobians of genus 2 curves (using Theorem 4 no quotient of a


genus 4 curve can be of genus 3). Conversely, if we apply Theorem 4 with gY = 1, we find


that the only possible option for deg(φ) is for it to be 2 or 3 (since
∑


P∈X(eφ(P )−1) ≥ 0).


We can rule out deg(φ) = 3 simply by checking the cases where the automorphism group


has an element of order 3.


Theorem 7. If X is a hyperelliptic curve of genus 4 with extra involutions and H a


subgroup of Aut(X), then X/H is a genus 2 curve if and only if H is generated by a
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non-hyperelliptic involution.


Unfortunately, all the genus 2 curves we get from Theorem 7 have cyclic automorphism


groups and so we cannot decompose them further (at least using this method) into the


product of two elliptic curves.


Theorem 8. If X is a genus 4 curve with automorphism group containing one of the


groups in the first column of Table 3.2, then JX decomposes as in the second column of


this table where Yi is a genus 2 curve.


G Jacobian Decomposition
C2 × C2 JY1 × JY2


V2
∼= D8 J2


Y


D8 J2
Y


D16 J2
Y


D10 × C2 JY1 × JY2


U8 J2
Y


V10 J2
Y


Table 3.2: Genus 4 Jacobian Decompositions


We now prove Theorem 8 for each possible group listed in Table 3.2.


C2 × C2


If a curve has an automorphism group containing C2 × C2, Theorem 3 gives us the


following isogeny relation for the Jacobian:


JX ∼ JX/〈a〉 × JX/〈b〉 × JX/〈ab〉.


From Theorem 7 we know that the quotient of X by both a and ab must be genus 2


curves and so JX is the product of the Jacobians of two genus 2 curves.
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D8 and D16


Let X be a curve whose automorphism group contains D8 or D16. Let n = 8 or 16 (the


order of the group). In either case, we form the following isogeny relation from Theorem


3


JX × J2
X/〈rn/4,s〉 ∼ JX/〈rn/4〉 × JX/〈s〉 × JX/〈srn/4〉. (3.14)


In both cases rn/4 is the hyperelliptic involution and so X/〈rn/4〉 has genus 0. Also, s


and srn/4 are in the same conjugacy class so JX/〈s〉 and JX/〈srn/4〉 (both genus 2 curves)


are isogenous. So, from (3.14) we conclude that JX is the square of the Jacobian of a


genus 2 curve.


D10 × C2 ' D20


As with the previous cases, there are quite a few subgroups of D20 which are isomorphic


to C2×C2 and contain the hyperelliptic involution which, in this group, is the element r5.


However, unlike the previous case, none of these subgroups contain two elements from


the same conjugacy class. The best we can conclude from (3.15) is that the Jacobian of


curves in this family is the product of two Jacobians of genus 2 curves.


JX × J2
X/〈r5,s〉 ∼ JX/〈r5〉 × JX/〈s〉 × JX/〈sr5〉. (3.15)


U8


Only one curve of genus 4, up to isomorphism, has automorphism group isomorphic to


U8, the curve y2 = x(x8 − 1). This curve is, in particular, in the family of curves whose


automorphism group contains D16. Since we already concluded that curves in this family


have Jacobians isogenous to the square of the Jacobian of a genus 2 curve and since, by


Theorem 7, no quotient of the curve by a non-hyperelliptic involution produces a genus
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1 curve, the best we can conclude for this curve is that its Jacobian is the square of the


Jacobian of a genus 2 curve.


V10


Here, too, only one curve of genus 4 up to isomorphism has automorphism group isomor-


phic to V10, y2 = x10 − 1. We apply Theorem 3 to the subgroup generated by a2 and ab


to get


JX × JX/〈a2,b5〉 ∼ JX/〈a2〉 × JX/〈b5〉 × JX/〈a2b5〉. (3.16)


The automorphism a2 is the hyperelliptic involution in this family. The automorphisms


a2b5 and b5 are in the same conjugacy class and so C/〈b5〉 and C/〈a2b5〉 are isomorphic.


From (3.16) we conclude that the Jacobian of the curve is isogenous to the square of the


Jacobian of a genus 2 curve. This genus 2 curve is isomorphic to the curve y2 = x5 − 1


which has automorphism group isomorphic to C10.


3.3.3 General Cases


C2 × C2


Any hyperelliptic curve of the form y2 = x2g+2 +α1x
2g +α2x


2g−2 + · · ·+αgx
2 +1 where g


is the genus of the curve, has automorphism group containing C2×C2. We use Theorem


3 to give us a decomposition of the Jacobian of curves of this form for any genus.


Theorem 9. Any curve X of the form above has a Jacobian that decomposes as JX ∼


JX1 × JX2 .


• If g ≡ 0 (mod 2) then gX1 = gX2 = g/2.


• If g ≡ 1 (mod 2) then gX1 = (g − 1)/2 and gX2 = (g + 1)/2.
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Proof. Applying Theorem 3 to the group C2 × C2 gives us the following isogeny


J2
X ∼ J2


X/〈a〉 × J2
X/〈b〉 × J2


X/〈ab〉. (3.17)


The three non-trivial automorphisms of this curve send x to −x and fix y (a), send y to


−y and fix x (b), and send both x and y to their negatives (ab).


The automorphism b is the hyperelliptic involution and so the quotient of X by this


automorphism is a genus 0 curve so we disregard it in (3.17). Hence (3.17) gives us


JX ∼ JX1 × JX2


where X1 = X/〈a〉 and X2 = X/〈ab〉.


When g ≡ 0 (mod 2), the automorphism a has two fixed points (0,±1) as does the


automorphism ab (the two points at infinity are fixed). If we apply Theorem 4 to either


automorphism, we see that


2g − 2 = 2(2gXi
− 2) + 2


g = 2gXi


so gXi
= g/2.


When g ≡ 1 (mod 2), the automorphism a has four fixed points (0,±1) as well as


the two points at infinity. However, the automorphism ab has no fixed points. In these


cases Theorem 4 gives


2g − 2 = 2(2gX1 − 2) + 4


g − 1 = 2gX1


and


2g − 2 = 2(2gX2 − 2) + 0
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g + 1 = 2gX2


so gX1 = (g − 1)/2 and gX2 = (g + 1)/2.


D2m


Suppose that X is a hyperelliptic curve with Aut(X) ⊆ D2m = 〈r, s| rm, s2, (rs)2〉. We


consider two cases, m odd and m even.


• m odd.


In this case, all involutions in D2m are in the same conjugacy class. Applying


Theorem 3 gives us


JX × J2
X/D2m


∼ JX/〈r〉 × J2
X/〈s〉. (3.18)


We let P (A/B) denote the Prym variety of A over B. If JX/D2m
∼= P1 (for instance


when Aut(X) = D2m) then


JX/〈r〉 × P (X/ X/〈r〉) ∼ JX ∼ JX/〈r〉 × J2
X/〈s〉.


And so by Poincaré’s complete reducibility theorem we have that P (X/ X/〈r〉) ∼=


J2
X/〈s〉. This particular result is stated in [24] with a different proof.


More general results involving Jacobian decompositions and Prym varieties may


also be found in [5]. We obtain several of their decompositions using our techniques


by replacing JX/〈r〉 with JX/D2m × P (X/〈r〉 / X/D2m) and replacing JX/〈s〉 with


JX/D2m × P (X/〈s〉 / X/D2m) in (3.18).


• m even.


Similar to the D8, D16, and D20 examples for genus 4, in this case Theorem 3 gives
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the decomposition


JX × J2
X/D2m


∼ JX/〈rm/4〉 × JX/〈s〉 × JX/〈srm/4〉. (3.19)


In the case when m is a power of two, s and srm/4 are conjugates of each other


which yields


JX × J2
X/D2m


∼ JX/〈rm/4〉 × J2
X/〈s〉. (3.20)


In the case when D2m is the full automorphism group of the curve, rm/4 is the


hyperelliptic involution and so (3.19) becomes


JX ∼ JX/〈s〉 × JX/〈srm/4〉


while (3.20) is


JX ∼ J2
X/〈s〉.


3.4 A Collection of Other Results


Here we compile a collection of other examples and results for hyperelliptic curves of low


genus which utilize the techniques outlined above.


3.4.1 Jacobian Decompositions of Quotient Curves


Sometimes we may be able to decompose the Jacobian of a lower genus curve by observing


it as a factor in the decomposition of the Jacobian of a higher genus curve. For instance,


take the genus 2 curve Y : y2 = (x2 − 4)(x3 − 3x + α) with α ∈ k. We cannot use the


method described above to decompose the Jacobian of this curve since the curve has only


the hyperelliptic involution as a non-trivial automorphism.


However, JY is isogenous to a factor of the Jacobian of X : y2 = x(x6 + αx3 + 1), a
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genus 3 curve with Aut(X) ∼= D12. We can use two different relations on the idempotents


derived from two different subgroups of D12 to get the following isogeny relations:


JY × E1 ∼ JX ∼ E2
1 × E2.


Hence by Poincaré complete reducibility theorem, JY ∼ E1 × E2.


3.4.2 Genus 5


We demonstrate an infinite family of hyperelliptic curves of genus 5 whose Jacobians are


isogenous to the product of 4 isogenous copies of one elliptic curve and one copy of a


non-isogenous elliptic curve. These curves are the ones we mention in Chapter 1 as an


example of the rank implications of this work. In Chapter 4 we will find a curve of genus


5 with Jacobian isogenous to E5 for some elliptic curve E. However, the curve in that


case is not hyperelliptic.


Take the curve X : y2 = x12 + αx6 + 1 for α ∈ k. This curve has automorphism


group D12 × C2 over Q(
√
−3), the field of definition of the automorphism group of this


curve over C. We apply Theorem 3 to the subgroup of the automorphism group of this


curve that is generated by the hyperelliptic involution and the involution that sends x


to −x and fixes y. This gives us that JX ∼ JA1 × JA2 where A1 : y2 = x6 + αx3 + 1


and A2 : y2 = x(x6 + αx3 + 1). The Jacobian of A1 decomposes into the square of the


elliptic curve E1 : y2 = x3 + (3x + 2 + α)2 (see [7]) while we know from Section 3.3.1


that the Jacobian of A2 is isogenous to E2
2 × E3 where E2 : y2 = x3 − 3x + α and


E3 : y2 = x3 + αx2 + x.


For every positive integer n there is a polynomial in two variables Φn(j1, j2) which


takes as input two j-invariants of elliptic curves and outputs a zero if there is an n-


isogeny between the two elliptic curves (an isogeny of degree n, degree again in terms of
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the extension of the function fields induced by the isogeny). Hence, for all n ∈ Z>0 we


can find an α such that E1 is n-isogenous to E2 simply by plugging the j-invariants into


Φn and solving for the α that makes this value zero.


So we have found an infinite family of curves such that JX
∼= E4


1 × E3.


3.4.3 Genus 7


In genus 7, the hyperelliptic curve X : y2 = x16 + 14x8 + 1 has three isogenous elliptic


curves in its Jacobian decomposition. This curve has automorphism group D16 × C2.


As with many of the previous examples JX ∼ JX/H1 × JX/H2 where Hi are order two


subgroups of G, one generated by the automorphism that sends x to −x and fixes y and


the other by the automorphism that sends x to −x and y to −y. In this case X/H1 is


the curve y2 = x8 + 14x4 + 1 which we saw in Section 3.3.1 has Jacobian isogenous to


three isogenous elliptic curves. Hence JX ∼ E3 × JX/H2 .


In fact, any curve of the form Xr : y2 = x8r + 14x4r + 1 will have a Jacobian that


contains at least three isogenous elliptic factors. This follows by induction on r since


JXr ∼ JX/H1 × JX/H2 (where H1 and H2 are order two subgroups of the automorphism


group of this curve again, one generated by the automorphism that sends x to −x and


fixes y and the other by the automorphism that sends x to −x and y to −y ) and


X/H1
∼= Xr−1.
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Chapter 4


Jacobian Decomposition:
Idempotents via Wedderburn
Decomposition


Again, given a curve X with Aut(X) = G, a second way to create isogeny relations


involves the Wedderburn decomposition of the group ring Q[G] =
⊕


Mni
(∆i) where ∆i


is a division ring.


4.1 Idempotent Relations


Let πi,j denote the idempotent of Q[G] which is zero everywhere except at the ith com-


ponent in this decomposition where it is the matrix with a 1 in the (j, j) position and


0 elsewhere. Let e : Q[G] → End0(JX) be the canonical map of Q-algebras. We apply


Theorem 2 to the idempotent relation 1Q[G] =
∑
i,j


πi,j to get the relation


JX ∼
⊕
i,j


e(πi,j)JX . (4.1)


This relation exists for any group G but evaluating the factors is more difficult than in


the technique discussed in Chapter 3. The relation in (4.1) is also derived in [11] using a


different technique. A computer program [4] for the computer algebra system GAP [12]


computes the decomposition of Q[G] for almost all G which we encounter in low genus.
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Our primary goal is to study elliptic curves that show up in the decomposition above


so we need to identify which summands in (4.1) have dimension 1. We use work of


Ellenberg [11] to compute the dimensions of these factors. We first define a special


representation of G.


Definition. Given a map of curves from X to Y = X/G (where Y has genus gY ),


branched at s points with monodromy g1, . . . , gs, let 1∗〈gi〉 denote the character of G


induced from the trivial character of the subgroup of G generated by gi (observe that


1∗〈1G〉 is the regular representation) and let 1G be the trivial character of G. There is a


special character of G which is the character for a rational representation, defined as


χ = 2 1G + 2(gY − 1)1∗〈1G〉 +
∑


i


(
1∗〈1G〉 − 1∗〈gi〉


)
.


A Hurwitz representation of a group G is the rational representation of such a char-


acter. This representation is the representation of G on H1
et(X, Ql), see [11].


Suppose V is a Hurwitz representation for G. We have the equality


dim e(πi,j)JX =
1


2
dimQπi,jV.


If χ, χi are the characters associated to V and Vi (the irreducible Q-representations


of G) then the dimension over Q of πi,jV is 〈χi, χ〉. Hence in order to compute the


dimensions of factors in (4.1) we compute the irreducible Q-characters and the Hurwitz


character for the extension X → X/G. Observe that the dimension of e(πi,j) does not


depend on j.
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4.2 An Example


We demonstrate this technique on the genus 4 curve X : y2 = x9 +1. The automorphism


group of this curve is G = C18 = 〈a〉 and so the technique of Chapter 3 cannot help us


since there is no partition of G or any of its subgroups. However, applying the technique


above, we can decompose the Jacobian of this curve into the product of a genus 1 curve


and a dimension 3 variety.


We first observe that


Q[C18] ∼= Q⊕Q⊕Q(ζ3)⊕Q(ζ6)⊕Q(ζ9)⊕Q(ζ18).


(4.1) then gives us that JX ∼
⊕6


i=1 e(πi,1)JX .


To compute the dimension of e(πi,1)JX we find the Hurwitz representation and the


Q-irreducible characters for C18. First, we need the monodromy of the cover of X over


X/G ∼= P1. To do this we compute the fixed points of all automorphisms of X and their


orbits under the action of the automorphisms. We get that the monodromy consists of


three elements in G of order 2, 9 and 18. We search for all possible combinations of


elements in G of these orders whose product is 1G and which generate the whole group.


We then compute the Hurwitz character for each of these possible monodromies.


We next find the Q-irreducible representations of C18. From the decomposition above,


we know that there are two linear representations, two of degree two, and two of degree


six. The characters of the two linear representations (denoted by χ1 and χ2) are the


trivial representation and the one that sends elements of the subgroup 〈a2〉 to 1 and


everything else to −1.


The degree two characters, χ3 and χ4, are the characters of the representation given


by sending a to the matrix 0 −1


1 −1


 and


0 −1


1 1
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respectively. The degree six characters, χ5 and χ6, are the characters of the representation


given by sending a to the matrix





0 0 0 0 0 −1


1 0 0 0 0 0


0 1 0 0 0 0


0 0 1 0 0 −1


0 0 0 1 0 0


0 0 0 0 1 0



and





0 0 0 0 0 −1


1 0 0 0 0 0


0 1 0 0 0 0


0 0 1 0 0 1


0 0 0 1 0 0


0 0 0 0 1 0



respectively. (We know all of these representations are Q-irreducible since the eigenvalues


of the image of a are all not in Q.)


Now for each possible monodromy we compute the inner product of each irreducible


rational character with χ. We find that 〈χ4, χ〉 = 2 and 〈χ6, χ〉 = 6, while the rest of the


inner products are zero. Hence the dimension of e(π4,1)JX = 1 and e(π6,1)JX = 3 and


thus we get that JX is isogenous to an elliptic curve and a dimension 3 variety.


4.3 Evaluating the Factors of the Jacobians


In [19], the authors compute automorphism groups and monodromies of covers for certain


curves up to genus 10. We use the method outlined above on their data to search for


examples of curves that answer the questions posed in Chapter 1. One word of warning,


their paper only asserts the existence of curves of a given genus with given automorphism


group. Equations for the curves with these automorphism groups are not given. We will


discuss this more later.


Since these questions involve finding curves whose Jacobians have many isogenous


elliptic curve factors, the following theorem will expedite our search by giving us a con-


dition on the Wedderburn decomposition of the group ring of the automorphism group
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which will sometimes give many isogenous elliptic curves in the decomposition of curves


with this automorphism group.


Theorem 10. With notation as above, e(πi,j)JX is isogenous to e(πi,k)JX .


Proof. Let Mi denote the ni × ni matrix with zeros at the (j, j) and (k, k) entries, a


value of 1 on the rest of the diagonal entries, a 1 at the (j, k) and (k, j) entries, and


zeros everywhere else. It is a quick exercise in matrix multiplication to show that Mi


has order 2. Let M be the element of Q[G] which is Mi in the ith component and the


identity matrix in every other component. Conjugating πi,j by M gives πi,k. We see this


by observing that M ∗ πi,j = πi,k ∗M.


Now since e is a homomorphism and M is, in particular, a unit, e(M ∗ πi,j) = M ′ ∗


e(πi,j) = e(πi,k ∗M) = e(πi,k) ∗M ′, where M ′ is also a unit, hence an automorphism of


the Jacobian. But then, since M ′ is an automorphism, M ′ ∗ e(πi,j)JX ∼ e(πi,j)JX and


e(πi,k) ∗M ′JX ∼ e(πi,k) ∗ JX . Hence e(πi,j)JX ∼ e(πi,k) ∗ JX .


Our goal, then, is to use the data in [19] to find automorphism groups G of curves


up to genus 10 such that Q[G] has a summand of the form Mg(∆) somewhere in its


decomposition. To compute the dimension of the summands from (4.1) we find both the


Hurwitz character and the irreducible Q-representations, and then computing the inner


products of the irreducible Q-characters with the Hurwitz character. If the value of this


inner product for the i corresponding to the summand of Q[G] of the form Mg(∆) were


to be of dimension 1 then we have found a curve such that JX ∼ Eg.


4.4 Results


For genus 4, 5, and 6 we find curves which positively answer Question 1 from Chapter 1.


For higher genus, we find curves which give a non-trivial lower bound for t from Question


2. We list the automorphism groups as their number in the small group database from
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the computer algebra package GAP. The first number represents the order of the group


and the second number is that particular group’s number in the database.


4.4.1 Genus 4


We take G to be the GAP group (72, 40) which is the automorphism group of one genus


four curve, up to isomorphism, [19]. The monodromy of the covering of this curve


(X → Y = X/G) consists of one each of an order 2, 4, and 6 element (again see [19]).


Using the GAP package “wedderga” [4], [23], we find that


Q[G] ∼= 4Q⊕M2(Q)⊕M2(Q(ζ3))⊕ 3M4(Q).


We perform an exhaustive search on all combinations of one each of an order 2, 4,


and 6 element and find a small number which generate G and whose product is 1G. One


of these combinations must be the monodromy for this cover and so we compute the


Hurwitz characters for each possible monodromy. For each of these characters, the inner


products give a value of 2 for one of the χi corresponding to one of the M4(Q) in the


decomposition of Q[G] and 0 for all the rest of the χi. So, by Theorem 10, JX ∼ E4.


4.4.2 Genus 5


In genus 5 there is one curve, up to isomorphism, whose automorphism group G is the


GAP group (160, 234). The monodromy of this cover, as computed in [19] consists of an


order 2, 4, and 5 element. Also,


Q[G] ∼= 2Q⊕M2(Q(ζ5 + ζ−1
5 ))⊕ 6M5(Q).


A quick search of all combinations of one each of an order 2, 4, and 5 element reveals


a limited number of such combinations whose product is 1G and which generate G. One
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of these must be the monodromy for the covering X → X/G. We compute the Hurwitz


character for each possible monodromy and, regardless of which one we use, the inner


product of any of these Hurwitz characters with the two linear Q-characters is zero.


In (4.1) the dimensions of both sides must be equal. For a genus 5 curve X, the


dimension of JX is 5 (see Proposition 1). Also, by Theorem 10, e(π3,1)JX ∼ e(π3,2)JX


so if the dimension of these varieties where non-zero, together they would contribute an


even dimension to the right side of (4.1). Similarly for i from 4 through 9, if the di-


mension of e(πi,j)JX is non-zero, each i contributes some multiple of 5 to the dimension


on the right side of (4.1). Putting all this together the only option is for e(π3,j) to have


dimension zero and for one i from 4 through 9 to satisfy dim e(πi,j)JX = 1 and the rest to


have dimension zero. Using Theorem 10, this means that JX ∼ E5 for some elliptic curve.


4.4.3 Genus 6


To find a genus six curve whose Jacobian is isogenous to the product of six isogenous


elliptic curves, we consider the curve with automorphism group (72, 15).


Q[G] ∼= 2Q⊕M2(Q)⊕M2(Q(ζ9 + ζ−1
9 ))⊕ 2M3(Q)⊕M6(Q)


and the monodromy consists of one each of an order 2, 4, and 9 element.


We again search all combinations of order 2, 4, and 9 elements to find the few possible


monodromies. For any possible monodromy the inner product of the Hurwitz character


with χ7 is 2 while the other inner products are zero. Again, by Theorem 10, JX ∼ E6.


4.4.4 Lower Bounds on t for Low Genus


In some cases, there may be no curve of a fixed genus g and automorphism group G


with a g × g matrix ring in the decomposition of Q[G]. However we can still use the
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method above to find non-trivial lower bounds for the t from Question 2 in Chapter 1.


For instance, the GAP group G = (192, 955) is the automorphism group of a curve of


genus 9.


Q[G] ∼= 4Q⊕ 4M3(Q)⊕ 2M2(Q)⊕ 4M6(Q)


and when we compute the inner product of the cover’s monodromy with the irreducible


Q characters, we get a value of 2 for one of the order 3 characters and one of the order


6 characters and a value of 0 for the rest of the inner products. Thus JX ∼ E3
1 ×E6


2 and


so for genus 9, t ≥ 6.


Automorphism Jacobian
Genus Group Decomposition
3 S4 × C2 JX ∼ E3


4 (C3 × C3) o D8 = (72, 40) JX ∼ E4


5 (C2 × C2 × C2 × C2) o D10 = (160, 234) JX ∼ E5


6 (C2 × C2) o D18 = (72, 15) JX ∼ E6


7 C8 o (C2 × C2) = (32, 43) JX ∼ E1 × E2
2 × E4


3


S3 × S3


S3 ×D8


8 C16 o C2 = (32, 18) JX ∼ E2
1 × E2


2 × A
9 (192, 955) JX ∼ E3


1 × E6
2


10 (C3 × C3) o D8 = (72, 40) JX ∼ E2
1 × E4


2 × E4
3


Table 4.1: Examples for Bounds on t


The values we obtain using this technique are outlined in Table 4.1 where Ei denotes


an elliptic curve and A is some abelian variety. Some of the automorphism groups of the


curves which give us the bounds on t are listed in this table as a semidirect product of


well recognized groups and by their numbers from the small group tables in GAP [12].


Over an algebraically closed field of characteristic 0 in genus 7 there are three separate


one dimensional families which give a lower bound of 4 for t. In genus 8 and 10, the


automorphism groups given are the automorphism groups of one dimensional families of


curves. All the other groups listed in the table are the automorphism groups of one curve


of that genus, up to isomorphism.
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There are many interesting questions that could be asked about the curves in Table


4.1. For instance, are there any common properties of the elliptic curves that show up


in these decompositions? Do the one dimensional families of genus 7 curves intersect


non-trivially which perhaps would give us a better lower bound on t for genus 7? In


genus 8 and 10, if we pick the parameter carefully, could some of the elliptic curves be


isogenous in one special curve leading again to better lower bounds on t?


Unfortunately, as mentioned before, the data we use only asserts the existence of some


curve of a particular genus, it does not give equations for the curves. In order to answer


these questions we would first need to find equations for the curves with the prescribed


automorphism group. There is no general theory for finding equations for a cover of P1


with given automorphism group and monodromy so each case would have to be handled


in an ad hoc manner.
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Chapter 5


Function Fields


For function fields associated to curves over finite fields, work of Artin and others may be


used to decompose Dedekind ζ-functions by studying relations among induced charac-


ters. These ζ-function decompositions are intimately tied to the Jacobian decompositions


which we have discussed in this thesis.


In this chapter we first describe how to decompose Dedekind ζ-functions using induced


characters. We then draw connections between relations on idempotents and relations


on induced characters. Finally, we use a result of Honda and Tate to correlate ζ-function


decompositions to Jacobian decompositions for curves over finite fields. Thus for the


case of curves over finite fields, we may use the work described in this thesis or work on


ζ-function decompositions interchangeably. Throughout this chapter k will denote the


finite field Fq.


5.1 Dedekind ζ-function Decompositions


In this section we describe how to decompose the Dedekind ζ-function of a global field


(number fields or function fields over finite fields). Much of the work in this section may


be traced back to Artin, [1],[2].
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Definition. The Dedekind ζ-function of a number field K is the series


ζK(s) =
∑


a


N(a)−s =
∏


p


1


1−N(p)−s


where a runs over all integral ideals of K, p runs over all prime ideals of K, and N(a) is


the absolute norm (if the prime decomposition of a is
∏


p pvp then N(a) =
∏


p N(p)vp).


Definition. The Dedekind ζ-function of a function field K over k = Fq is the series


ζK(s) =
∑
D≥0


N(D)−s =
∏
P


1


1−N(P )−s


where D runs over all effective divisors of K and N(D) = qdeg(D).


In order to decompose these ζ-functions we define the Artin L-series which are closely


related to ζ-functions. Take any extension F over K of global fields with Galois group


G and let χ be a character associated to a representation V of G. We let p be a prime


in K and p a prime in F sitting over p with inertial group Ip and decomposition group


Gp. The quotient group Gp/Ip is isomorphic to the Galois group of the residue field


extension of p over p, which is cyclic. This Galois group is generated by the Frobenius


automorphism φp which is defined to be the automorphism satisfying


φp(ω) ≡ ωN(p) mod p ∀ω ∈ Op.


Definition. The Artin L-series attached to χ is given by


L(F/K, χ, s) =
∏


p


1


detV Ip (I − φpN(p)−s)


where the product is taken over all unramified primes p in the extension F/K.


The following three properties of L-series will be useful in decomposing ζ-functions.
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Proposition 3. 1. For the trivial character 1G,


L(F/K,1G, s) = ζK(s).


2. If χ1, χ2 are two characters of G then


L(F/K, χ1 + χ2, s) = L(F/K, χ1, s)L(F/K, χ2, s).


3. Given a subgroup H ≤ G with fixed field E and a character ϕ,


L(F/E, ϕ, s) = L(F/K, ϕ∗, s)


where ϕ∗ is the induced character of ϕ in G.


It follows from these properties that the zeta function of the field F can be written


in terms of the L-series as


ζF (s) =
∏
χirr


L(F/K, χ, s)deg(χ).


Suppose we are given a Galois extension of global fields F/K with Galois group G and


with induced characters of trivial characters of subgroups H of G satisfying the following


relation ∑
H<G


aH1∗H = 0 (5.1)


for some aH ∈ Z and where 0 represents the zero class function. Applying Proposition


3.2 to the factors in (5.1) yields


∏
H<G


L(F/K,1∗H , s)aH = L(F/K, 0, s) (5.2)
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and by Proposition 3.3 we know that


L(F/K,1∗H , s) = L(F/FH ,1H , s).


Proposition 3.1 gives us that


ζF H (s) = L(F/FH ,1H , s).


We may therefore rewrite (5.2) as


∏
H<G


ζaH


F H = 0. (5.3)


Thus the relation (5.1) holds if and only if (5.3) holds as well. Suppose we have a function


field K over k with G the Galois group of this extension. If we can find a relation among


the induced characters of trivial characters of subgroups of G and the trivial character of


G, as in (5.1), then by (5.3) we can decompose the ζ-function of K in terms of ζ-functions


of subfields of K.


5.2 Idempotents and Induced Characters


In order to relate the previous section to the work in this thesis, we first connect certain


idempotents of Q[G] with induced trivial characters of subgroups H of G.


Lemma 1. Fix a finite group G. There is a one-to-one relation between characters of G


which are induced trivial characters of subgroups H of G and idempotents of the form


εH =
1


|H|
∑
h∈H


h.


(These are the same idempotents from Chapter 3.)
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Proof. We first define a function f from induced trivial characters of subgroups H of


G to Q[G] by sending 1∗H to
∑


g 1∗H(g)g. The induced trivial character of H is defined


as 1∗H(g) = 1
|H|
∑


x∈G 10
H(xgx−1) where 10


H(g) = 1H(g) if g ∈ H and 0 otherwise. We


then can define a one-to-one correspondence mapping 1
|H|
∑


g


(∑
x∈G 10


H(xgx−1)
)
g to


1
|H|
∑


h∈H h.


This lemma gives us a way to translate between relations among induced characters


(which give us decompositions of ζ-functions as in the previous section) and relations


among idempotents (which give us decompositions of Jacobian varieties as in Chapters


3 and 4.


5.3 Jacobian and ζ-function Decompositions


For curves over finite fields, decompositions of ζ-functions are directly connected to de-


compositions of Jacobian varieties, via the following theorem.


Theorem 11 (Honda-Tate). Let A and B be abelian varieties over a finite field k = Fq


and let fA and fB ∈ Z[T ] be the characteristic polynomials of their q-Frobenius endomor-


phisms. Then B is k-isogenous to an abelian subvariety of A if and only if fB|fA in Q[T ]


and A is k-simple if and only if fA is a power of an irreducible polynomial in Q[T ].


Take a curve X over the field k and let K(X) be its function field and G its automor-


phism group. The numerators of ζ-functions are exactly the characteristic polynomials


of the Frobenius action.


If we have a relation among the ζ-function of K(X) and the ζ-functions of subfields


of K(X) as in (5.3) we get a decomposition for the ζ-function of K(X). The factors of


this decomposition are the ζ-functions of subfields of K(X).


We apply Theorem 11 with A = JX and B the subvariety associated to one of the


subfields of the function field which shows up in the ζ-function decomposition. The
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theorem then tells us that B is a factor of A. Continuing in this way for all factors in


the ζ-function gives us a decomposition of JX .


41







Appendix A


Genus 3 and 4 Hyperelliptic Curve
Data


Below are a lists of automorphism groups of families of hyperelliptic curves of genus 3


and 4 which are used in Chapter 3. We include data about models of these curves and


the generators for their automorphism groups. In many cases where the generators of the


automorphism group form quotient curves of genus greater than zero, we include a model


for the quotient curve(s) as well. Throughout αi is an element of the field of definition


for the curve and ζn is a primitive n-th root of unity. In places where the hyperelliptic


involution is one of the generators, we denote it by ω.


A.1 Genus 3 Curves


C2 × C2


Model y2 = x8 + α1x
6 + α2x


4 + α3x
2 + 1


Generators a : x 7→ −x y 7→ y


ab : x 7→ −x y 7→ −y


Quotients X/〈a〉 : y2 = x4 + α1x
3 + α2x


2 + α3x + 1


X/〈ab〉 : y2 = x(x4 + α1x
3 + α2x


2 + α3x + 1)
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C4


Model y2 = x(x6 + α1x
4 + α2x


2 + 1)


Generator a : x 7→ −x y 7→ iy


C14


Model y2 = x7 + 1


Generator a : x 7→ ζ7x y 7→ −y


D4 × C2


Model y2 = (x4 + α1x
2 + 1)(x4 + α2x


2 + 1)


Generators a : x 7→ −x y 7→ y


b = ω : x 7→ x y 7→ −y


c : x 7→ 1
x


y 7→ y
x4


Quotients X/〈a〉 : y2 = (x2 + α1x + 1)(x2 + α2x + 1)


X/〈c〉 : y2 = (x2 + α1 − 2)(x2 + α2 − 2)


H2 ' C4 × C2


Model y2 = (x4 − 1)(x4 + αx2 + 1)


Generators a : x 7→ 1
x


y 7→ iy
x4


b : x 7→ −x y 7→ y


Quotient X/〈b〉 : y2 = (x2 − 1)(x2 + αx + 1)


U2 ' C4 × C2


Model y2 = x(x2 − 1)(x4 + αx2 + 1)


Generators a : x 7→ 1
x


y 7→ iy
x4


b : x 7→ − 1
x


y 7→ y
x4


Quotient X/〈b〉 : y2 = x3 + (2 + α)x
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D12


Model y2 = x(x6 + αx3 + 1)


Generators r : x 7→ ζ3x y 7→ ζ6y


s : x 7→ 1
x


y 7→ y
x4


Quotient X/〈s〉 : y2 = x3 − 3x + α


D8 × C2


Model y2 = x8 + αx4 + 1


Generators (1234) : x 7→ ix y 7→ y


(14)(23) : x 7→ 1
x


y 7→ y
x4


(56) = ω : x 7→ x y 7→ −y


Quotient X/〈(56)〉 : y2 = x4 − 4x2 + 2 + α


U6


Model y2 = x(x6 − 1)


Generators a : x 7→ −1
x


y 7→ y
x4


b : x 7→ ζ6x y 7→ ζ12y


Quotient X/〈a〉 : y2 = x3 − 3


V8


Model y2 = x8 − 1


Generators a : x 7→ 1
x


y 7→ iy
x4


b : x 7→ ζ8x y 7→ y
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S4 × C2


Model y2 = x8 + 14x4 + 1


Generators (12) : x 7→ 1−x
1+x


y 7→ − 4y
(1+x)4


(1234) : x 7→ ix y 7→ y


(56) = ω : x 7→ x y 7→ −y


A.2 Genus 4 Curves


C2 × C2


Model y2 = x10 + α1x
8 + α2x


6 + α3x
4 + α4x


2 + 1


Generators a : x 7→ −x y 7→ y


ab : x 7→ −x y 7→ −y


Quotients X/〈a〉 : y2 = x5 + α1x
4 + α2x


3 + α3x
2 + α4x + 1


X/〈ab〉 : y2 = x(x5 + α1x
4 + α2x


3 + α3x
2 + α4x + 1)


C4


Model y2 = x(x6 + α1x
4 + α2x


2 + 1)


Generator a : x 7→ −x y 7→ iy


C6


Model y2 = x9 + α1x
6 + α2x


3 + 1


Generator a : x 7→ ζ3x y 7→ −y
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C18


Model y2 = x9 + 1


Generator a : x 7→ ζ9x y 7→ −y


V2 ' D8


Model y2 = (x2 − 1)(x4 + α1x
2 + 1)(x4 + α2x


2 + 1)


Generators r : x 7→ 1
x


y 7→ iy
x5


s : x 7→ −x y 7→ y


Quotient X/〈s〉 : y2 = (x− 1)(x2 + α1x + 1)(x2 + α2x + 1)


D8


Model y2 = x(x4 + α1x
2 + 1)(x4 + α2x


2 + 1)


Generators r : x 7→ −x y 7→ iy


s : x 7→ 1
x


y 7→ y
x5


Quotient X/〈s〉 : y2 = (x + 2)(x2 + α1 − 2)(x2 + α2 − 2)


Q8


Model y2 = x(x4 − 1)(x4 + αx2 + 1)


Generators −1 = ω : x 7→ x y 7→ −y


i : x 7→ −x y 7→ iy


j : x 7→ 1
x


y 7→ iy
x5


D16


Model y2 = x(x8 + αx4 + 1)


Generators r : x 7→ ix y 7→ ζ8y


s : x 7→ 1
x


y 7→ y
x5


Quotient X/〈s〉 : y2 = (x4 − 4x2 + 2 + α)(x + 2)
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D10 × C2 ' D20


Model y2 = x10 + αx5 + 1


Generators r : x 7→ ζ5x y 7→ −y


s : x 7→ 1
x


y 7→ y
x5


Quotient X/〈s〉 : y2 = (x + 2)(x5 − 5x3 + 5x + α)


U8


Model y2 = x(x8 − 1)


Generators a : x 7→ ζ8
x


y 7→ ζ13
16y


x5


b : x 7→ ζ8x y 7→ ζ16y


Quotient X/〈a〉 : y2 = (x− 2ζ16)(4x
2 − (2 + (1 + i)


√
2)2)


V10


Model y2 = x10 − 1


Generators a : x 7→ 1
x


y 7→ iy
x5


b : x 7→ ζ10x y 7→ y


SL2(3)


Model y2 = x(x4 − 1)(x4 + 2i
√


3x2 + 1)


Generators a : x 7→ x+i
x−i


y 7→ (4ζ8


√
1+i


√
3)y


(x−i)5


b : x 7→ −x y 7→ iy
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