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Abstract. The automorphism group of a Riemann surface is important in a

number of different mathematical fields. An algorithm of Thomas Breuer pro-

vides ways to determine all such groups for a fixed genus, but data generated
from this algorithm did not include the generators of the monodromy group,

which are also valuable. This paper describes modifications the author made

to Breuer’s code to add the generators, as well as other new code to com-
pute additional information about a given Riemann surface. Data from this

project has been incorporated into the L-functions and Modular Forms Data-

base (http://www.lmfdb.org) and we also describe the relevant data there.

1. Introduction

Groups acting on Riemann surfaces are important to a range of mathematical
topics from Galois theory of extensions of C(z) [Völklein, 1996], to Jacobian variety
decompositions [Paulhus, 2008], to Galois covers of the projective line correspond-
ing to Shimura varieties [Frediani et al., 2015], to questions about indecomposable
rational functions [Fried, 1973]. Most of these topics utilize the generators of the
monodromy group of the covering corresponding to the mapping X → X/G from
a Riemann surface X to the orbit space of X by the group G acting on it.

Breuer created computer code to determine all groups acting on Riemann sur-
faces of a given genus [Breuer, 2000]. He ran the code up to genus 48, and recorded
the groups along with limited information about the ramification of the mapping
X → X/G. Within his code, generators of the monodromy group were also com-
puted, but not recorded. We added functionality to Breuer’s code to fully compute
these generators, and wrote new code to compute additional information about Rie-
mann surfaces. As this data will aid other researchers, we are creating a publicly
visible, easily accessible database containing this data.

Enter the L-functions and Modular Forms Database (henceforth called “LMFDB”),
a huge database of mathematical objects. As an established database with a strong
infrastructure, LMFDB is an ideal location to post this data. Part of its goal is
to provide opportunities for unexpected connections between mathematical con-
cepts. This paper describes the modifications we made to Breuer’s code, as well as
additional computations (such as which actions correspond to full automorphism
groups, and which correspond to hyperelliptic curves) we use to generate data on
LMFDB. The relevant code may be found at http://github.com/jenpaulhus and
the database is at http://www.lmfdb.org/HigherGenus/C/Aut.
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Section 2 is an overview of the necessary mathematical background on groups
acting on Riemann surfaces, and in Section 3 we describe the theoretical under-
pinnings of the original code of Breuer. In Section 4 we explain the new pieces of
mathematical information added to the data and discuss the organization of the
data on LMFDB. Finally in Section 5 we enumerate planned future additions to
the database.

2. Background on Riemann Surfaces

Let X be a compact Riemann surface of genus g ≥ 2 (also referred to as a
“curve”), and let G =Aut(X), the group of biholomorphic maps from X to itself.
It is well known that this group is finite and bounded in size by 84(g− 1). There is
a natural mapping φ : X → Y = X/G where Y is the orbit space of X under the
action of G (φ sends x ∈ X to the orbit of x under the action of G), and g0 denotes
the genus of the quotient Y . It is possible that this mapping branches at several
points of Y , say on a set B ⊂ Y of size r. Letting φ−1(B) ⊂ X be the inverse image
of these points, the mapping from X − φ−1(B) to Y − B is a degree d covering
for some positive integer d. For details on the covering space theory used in the
paper, we recommend [Lee, 2011, Chapters 11 and 12]. For our specific situation,
we recommend [Fried, 1980] or [Breuer, 2000].

Fix a base point y0 ∈ Y − B. Then φ−1(y0) consists of d points in X − φ−1(B),
say φ−1(y0) = {x1, . . . , xd} ⊂ X. Now consider a loop starting at y0 and traveling
once around one branch point in B. For each element xi in φ−1(y0) this loop lifts
uniquely to a path in X which starts at xi and ends at some xj ∈ φ−1(y0). This
defines a permutation on the d elements of φ−1(y0): send i to the number of the
endpoint of the corresponding lift starting at xi. These r permutations induce a
map ρ : π1(Y − B, y0) → Sd where Sd is the symmetric group on d elements, and
the image of ρ is called the geometric monodromy group which is isomorphic to
Aut(X) in the case of Galois covers. The order of each permutation corresponding
to a loop around one element of B is denoted mi for 1 ≤ i ≤ r. When X and Y are
connected, the image of ρ is a transitive subgroup of Sd.

The universal cover of a compact Riemann surface is the upper half plane H =
{z ∈ C | Im(z) > 0} which has automorphism group PSL(2,R), and so X may
be described as the orbit space of H by a torsion free subgroup of Aut(H) (see
[Breuer, 2000, Theorem 3.9] or [Jones and Singerman, 1987, 4.19.8]). Call that
torsion free subgroup K. It is isomorphic to π1(X,x0).

Similarly, Y is equivalent to the orbit space of H by a subgroup Γ of PSL(2,R)
called a Fuchsian group. These Fuchsian groups have an explicit presentation
[Breuer, 2000, Theorem 3.2]:

(1) Γ = 〈α1, β1, . . . , αg0 , βg0 , γ1, . . . , γr |
g0∏
i=1

[αi, βi]

r∏
j=1

γj = 1, γ
mj

j = 1〉

where [αi, βi] is the commutator of αi and βi. The list of non-negative integers
[g0;m1, . . . ,mr] is called the signature of Γ and is uniquely determined for each
Fuchsian group. The action of Γ on H induces an action of Γ/K on H/K, so
G ∼= Γ/K. As such we have an exact sequence

(2) 1→ K
ι−→ Γ

η−→ G→ 1.
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Then, G = Aut(X) may also be defined as the image of a surface kernel epimor-
phism, a surjection η : Γ→ G. Observe that different surface kernel epimorphisms
may exist for fixed groups Γ and G. So to classify actions it is not sufficient to
only give the group and signature. We also need to describe the map η via, say,
a description of where η sends the generators. Due to the structure of Γ, the
group G may be completely defined by 2g0 hyperbolic generators a1, b1, . . . , ag0 , bg0
and r elliptic generators c1, . . . , cr such that the ci have order mi and the product∏g0
i=1[ai, bi]

∏r
j=1 cj = 1G where 1G is the identity element of G. We call this list

of 2g0 + r generators of G a generating vector.

Conversely, suppose G is any transitive subgroup of some symmetric group Sd
with 2g0 + r generators {a1, b1, . . . , ag0 , bg0 , c1, . . . , cr} such that the ci have order
mi and

∏g0
i=1[ai, bi]

∏r
j=1 cj = 1G. We say such a group has product one generators,

and a set of 2g0 + r generators is a product one generator. Then any surjection
η : Γ → G defined as η(αi) = ai, η(βi) = bi, and η(γi) = ci has a corresponding
kernel K, and G acts on the compact Riemann surface X defined as the orbits of
K acting on H.

Hence there is a one-to-one correspondence between surjective maps η : Γ → G
with ker(η) a torsion free group and finite groups which have product one gener-
ators. This is the beautiful existence theorem of Riemann (really a generalization
of it) and it gives a way to translate the topological language of ramified coverings
to the world of generators of finite groups. There are several very good sources
on Riemann’s existence theorem, particularly [Fried, 1980]. For a brief survey with
generalizations and historical perspectives, see [Harbater, 2015]. The topic is also
treated briefly in [Miranda, 1995, pg. 90-94], or in relation to function fields and
the Inverse Galois Problem [Völklein, 1996].

As with most mathematical objects, many unequal surface kernel epimorphisms
exhibit identical behaviors. For example, relabeling the elements of φ−1(y0) (or re-
ordering the ci) should not constitute creating a “new” action. There are a number
of different equivalence relations that may be placed on the surface kernel epimor-
phisms and we must make choices about which equivalence relation to classifying
group actions up to in the database. For this work, we consider an equivalence rela-
tion which is slightly weaker than topologically or analytically equivalent, meaning
two distinct group actions in our database may actually be topologically (or even
analytically) equivalent. In Section 5 we discuss the idea of analytically and topo-
logically equivalent actions in relation to future work.

Let G be a finite group which is the image of a surface kernel epimorphism
η : Γ→ G, with [g0;m1, . . . ,mr] the signature of Γ. We denote by C = (C1, . . . , Cr)
a list of r conjugacy classes in G (not necessarily distinct) each containing elements
of order mi. Define S to be the set {(s1, . . . , sr) : si ∈ Ci}. Then G acts on S by
component-wise conjugation. We denote conjugation of si by some h ∈ G as shi
and refer to this action as simultaneous conjugation.

In the special case when these tuples are generating vectors, any two vectors
in the same orbit under simultaneous conjugation represent conformally equivalent
actions in the Riemann surface (although the converse is not always true). This
follows from the definition of conformal equivalence (see Section 5.1) and the fact
that conjugation is an element of Aut(G). Notice that the properties of a tuple
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in S being a product one generator are invariant under simultaneous conjugation.
This equivalence relation is the one we use to classify our actions.

Given a Riemann surface X of genus g, a group G acting on X, a tuple C =
(C1, . . . , Cr) of conjugacy classes of G, and a generating vector (s1, . . . , sr) with si
in Ci, then the tuple (g,G, C) is called a refined passport [Sijsling and Voight, 2014]
(alternatively that X is of ramification type (g,G, C) [Magaard et al., 2002]). A
passport is a similar tuple of information, but the conjugacy classes are only consid-
ered in Sd, so the actions are only classified up to the cycle type of the generators
of G.

3. Breuer’s Code

Breuer’s contribution to this topic was to devise an algorithm to generate a
list of all groups and corresponding signatures for which there is a surface kernel
epimorphism η : Γ → G for a fixed genus. We only give a brief overview of his
algorithm here (see [Breuer, 2000] for more details).

Breuer’s algorithm first generates a list of all possible signatures for Fuchsian
groups Γ for a given genus g and given order n of the automorphism group, using
combinatorial restrictions on possible mi values, as well as the Riemann-Hurwitz
formula.

Next the algorithm searches the small group database in [GAP, 2006] and uses
group theoretic results to construct a list of groups G of order n which could have
one of the determined admissible signatures for that n. If a group of order n
does not have elements of orders corresponding to the values in the signature, it is
removed from the list of potential automorphism groups.

Finally, the algorithm determines which possible groups G satisfy the condi-
tion that there is a surjective morphism η : Γ → G. This step in the algorithm
utilizes several different group theoretic results concerning the structure of conju-
gacy classes. The algorithm first determines all possible lists of conjugacy classes
C = (C1, . . . , Cr) such that the order of elements in Ci is mi (so potential refined
passports for a given genus and group). Then a result in [Scott, 1977, Theorem 1]
gives a sufficient condition on the irreducible characters of a group G to show there
is not a surjective homomorphism η : Γ → G. Similarly, Breuer computes the size
of HomC(g0, G), the set of homomorphisms from the Fuchsian group corresponding
to the given signature to the group G, using the following theorem.

Theorem 3.1 (Theorem 3, [Jones, 1995]). With C = (C1, . . . , Cr) as above,

|HomC(g0, G)| = |G|2g0−1
∑

χ∈Irr(G)

χ(1)2−2g−r
r∏
i=1

∑
σi∈Ci

χ(σi).

When this value is 0, there cannot be a surface kernel epimorphism for that
refined passport.

Conversely, to show there is an epimorphism η : Γ → G, a specific generating
vector defining the particular surface kernel epimorphism must be found (as the
images in G of αi, βi, γj from (1) under the mapping η). A brute search of all
possible generating vectors for a given refined passport is not feasible, especially
for large signatures or large groups.

Instead Breuer uses the following proposition to quickly generate one element of
each orbit under the action of simultaneous conjugation.
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Proposition 3.2 (Lemma 15.27, [Breuer, 2000]). Fix elements σi ∈ Ci for each
1 ≤ i ≤ r. Then the following set T gives us precisely one representative for each
orbit of the action of G on S = {(s1, . . . , sr) : si ∈ Ci} by simultaneous conjugation:

T = {(σ1, σb22 , . . . , σbrr ) : bi ∈ R(b1, . . . , bi−1) for 2 ≤ i ≤ r}
where R(b1, . . . , bi−1) is a set of representatives of the double coset

CG(σi)\G/CG(σ1, σ
b2
2 , . . . , σ

bi−1

i−1 ),

defined iteratively and where CG(g1, g2, . . . , gk) means the intersection of the cen-
tralizers of gi ∈ G for 1 ≤ i ≤ k.

Each element of T is tested to see if it is a product one generator. Breuer did
not record these generating vectors in his original data, though. His goal was to
list group and signature pairs only.

4. New additions

As mentioned above, to fully classify group actions on Riemann surfaces, we
need to know the generating vector for each action. We converted Breuer’s code to
the computer algebra language Magma [Bosma et al., 1997] to align the programs
with other code written by the author. We also added functionality which, given
a group and signature, outputs the generating vector(s) for each refined passport
up to simultaneous conjugation generated via Proposition 3.2 (see [Paulhus, 2015],
specifically the file genvectors.mag). This is the key piece of code, as we do not
need to reproduce all of Breuer’s program. We use his group and signature pairs
as a starting point, and then add the generating vectors using the modified version
of his code.

There is also a software package in GAP called MapClass, which, among other
computations, finds the generating vectors given a group and list of conjugacy
classes corresponding to a refined passport [James et al., 2012].

One important piece of information which is not determined in Breuer’s original
code is whether the group action described is the full automorphism group for the
family of curves with corresponding data. Suppose we have an exact sequence

1→ K
ι−→ Γ

η−→ G→ 1

as in (2), and a corresponding generating vector from our modified version of
Breuer’s code. It is possible that there is some group H, Fuchsian group Γ0 so
that G < H, a mapping j : Γ→ Γ0, and an exact sequence

1→ K
ιo−→ Γ0

η0−→ H → 1

so that η = η0 ◦ j. In this case, the generic element of this family of Riemann
surfaces has automorphism group H and signature that of Γ0.

In [Ries, 1993] there are conditions for determining exactly when this situation
occurs. Given G and Γ, the paper also describes explicitly how to compute H
and Γ0. The cases G � H are covered in [Ries, 1993, Theorem pg. 390], while
the remaining cases are covered in Table 1 and Table 2 of that paper. First, the
signature of Γ must match one of only a handful of signatures for which this scenario
can happen. For example, if g0 = 0 and there are more than 4 branch points, the
given group G is always the full automorphism group of the generic point of the
family (η in this case never satisfies the conditions outlined in [Ries, 1993]). If the
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signature is one of the few that might lead to a larger automorphism group, in the
cases where G � H, there must also exist an element of the automorphism group
of G that behaves in a certain way on the generating vector corresponding to this
action η.

We have written code [Paulhus, 2016] which takes the output of the modified
Breuer program and determines if the mapping η defined by a generating vector
satisfies one of the conditions outlined in Ries. When such an example is found,
the group H and signature of Γ0 are also recorded. One caveat: the code only
determines the group H and signature of Γ0, it does not determine exactly which
refined passport (if there is more than one) the original group G and signature
correspond to. This should be possible to determine using information in the proof
of Theorem pg. 390 in [Ries, 1993].

In the special case when the signature of the action is [0; k, k, k] or [0; k, k, k, k],
we must determine if there exists an automorphism of G which acts in a certain
way on a generating vector up to applying an element of Aut+(Γ) to the elements
of the generating vector, where Aut+(Γ) is orientation preserving automorphisms
of Γ.

In the two cases when this happens, g0 = 0 so the group Aut+(Γ) is the
Artin braid group. This group is an infinite (but finitely generated) group gen-
erated by Q1, . . . , Qr−1 where Qi is the mapping sending one generating vector
(s1, s2, . . . , sr) to (s1, . . . , si−1, si+1, s

−1
i+1sisi+1, si+2, . . . , sr) [Magnus et al., 1966,

Section 3.7]. However, the orbit of a given generating vector under the action
of the elements of the braid group is finite (since the group G is finite there are
only a finite number of generating vectors). To exhaustively determine whether the
action corresponds to the full group, we need to generate the whole orbit of a given
generating vector and test if there is an element of Aut(G) which acts on one of the
generating vectors in that orbit in such a way to satisfy the conditions as described
in Ries’s paper.

To do this, given a generating vector and all cycles of it (or permutations if the
group is abelian), we apply the braids Q1, Q2 (and Q3 in the case of [0; k, k, k, k])
to the list of generating vectors and test all of the elements in this list against the
condition set out in [Ries, 1993, Theorem pg. 390]. If we find an automorphism
satisfying the conditions in this theorem, we have a candidate for the full auto-
morphism group. If not, we apply the braids to the new larger set and repeat the
process. This will eventually generate the whole orbit (if it doesn’t find, along the
way, a generating vector in the orbit which satisfies the condition mentioned above)
and the program will terminate since the orbit is finite. If it terminates without
finding a generating vector satisfying the conditions, the action represented by the
initial generating vector must be the full automorphism group.

Once we determine whether an action represents the full automorphism group,
we compute additional information connected to the given refined passports. An
interesting property of the families of Riemann surfaces described by these actions
is whether they are hyperelliptic curves or cyclic trigonal curves. A hyperelliptic
curve of genus g is defined by the presence in its automorphism group of a central
involution with 2g + 2 fixed points, while a cyclic trigonal curve of genus g is
defined by the presence of an automorphism of order 3 which fixes g + 2 points.
Given a generating vector, code to compute the number of fixed points of a given
automorphism (using [Breuer, 2000, Lemma 10.4]), and then determine if the curve
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is hyperelliptic or cyclic trigonal is in [Swinarski, 2016]. Code in that paper also
computes the hyperelliptic involution or trigonal automorphism, which we include.

Once the generating vectors are known, two other key pieces of data about
corresponding varieties are then computed. Work of the author gives a method to
use the automorphism group of a curve (and the generating vectors of the action) to
decompose its Jacobian variety [Paulhus, 2008]. The code to implement this method
may be found at [Paulhus and Rojas, 2016]. An entry such as E×E3×A4×A2

5 in the
database means the decomposition consists of four factors: an elliptic curve, three
isogenous copies of (possibly) another elliptic curve, one dimension four abelian
variety, and two isogenous copies of a dimension five abelian variety.

In the paper [Frediani et al., 2015], the authors define a way to compute the
dimension of the corresponding Shimura variety, again given the generating vectors.
They provide code to compute this dimension at www.dima.unige.it/~penegini/
publications/PossGruppigFix_v2Hwr.m, which we run on all examples in the
database.

Breuer’s algorithm only asserts the existence of a family of Riemann surfaces
with a particular group acting on it and with a particular signature. It is impor-
tant to also know the equation(s) for the curves in this family. Determining an
equation for a curve given an automorphism group and signature is, in general, a
very hard problem. Equations are known for hyperelliptic curves [Shaska, 2003],
genus 3 curves with automorphisms [Magaard et al., 2002], and genus 4-7 curves
with “large” automorphism groups (the size of the automorphism group is at least
4(g − 1)) [Swinarski, 2016]. We added all these equations to the data with one
small exception. In [Shaska, 2003] the equations are classified up to passports, not
up to refined passports (the cycle structure of the generating vectors instead of the
conjugacy classes in G). In two cases (if G ∼= C2 × C2, and if G ∼= C4 × C2 and
the quotient of G by the hyperelliptic involution is C2×C2) there is more than one
equation listed in [Shaska, 2003] but in our data there are distinct refined passports
which are in the same passport. The author does not know a way to determine
which equation(s) correspond to which refined passport.

One note about our presentation of groups. Breuer’s original code outputs a
group as labeled in Magma or GAP, so as a pair (a, b) which indicates the group is
of order a and is the bth group of that order in the database of small groups. Our
Magma version of Breuer’s code requires the group to be a permutation group to
compute double coset representatives as in Proposition 3.2. However, in Magma,
many groups of the form SmallGroup(a,b) are not permutation groups. Also, to
correspond to the mapping ρ : π1(Y − B, y0) → Sd from Section 2, the group G
must be transitive and satisfy the Riemann-Hurwitz formula. So we first convert
the group to a permutation group, as in the standard proof of Cayley’s theorem.
The code to do this is at [Paulhus, 2016]. In doing so, we are specifying that our
covers are Galois.

Putting this all together, the final process to create the database at
http://www.lmfdb.org/HigherGenus/C/Aut is:

• For a fixed genus, load all the signature and group pairs computed with
Breuer’s original program and loop over this data.

www.dima.unige.it/~penegini/publications/PossGruppigFix_v2Hwr.m
www.dima.unige.it/~penegini/publications/PossGruppigFix_v2Hwr.m
http://www.lmfdb.org/HigherGenus/C/Aut
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• Convert groups of the form SmallGroup(a,b) in Breuer’s data to permu-
tation groups.
• Use our modified version of Breuer’s code to determine the refined pass-

ports, and compute generating vector(s) for each.
• Determine if the action on each refined passport describes the full auto-

morphism group of the family.
• Compute the Jacobian variety decomposition and the dimension of the

corresponding Shimura variety.
• If the action is the full action, check if the family consists of hyperelliptic

or cyclic trigonal curves. In special cases we add equations.
• Future additional information will be checked at this point.

4.1. Organization of the data on LMFDB. Currently the database contains
data up to genus 15, and we have initially only included examples where the quotient
XG is the Riemann sphere (g0 = 0).

Each tuple of information: (genus, group, signature) has its own page on LMFDB.
On each such page there is a list of the different refined passports corresponding to
the given genus, group, and signature, and links to individual pages for each refined
passport.

The individual pages of each refined passport list all generating vectors corre-
sponding to this passport. We also list which conjugacy classes the refined passport
corresponds to (as labeled by Magma when we initially generate the data). These
pages also contain information about whether the action represents the full au-
tomorphism group of the family of Riemann surfaces. If the example is not the
full automorphism group, a link to the action which does correspond to the full
automorphism group is also included. We note if a refined passport of a full auto-
morphism group corresponds to a hyperelliptic curve or a cyclic trigonal curve, and
list the corresponding hyperelliptic involution or trigonal automorphism. Known
equations are also displayed here.

On both types of pages, a download button is available which downloads a
Magma or GAP record with information for the given refined passport (or sev-
eral records representing all the refined passports corresponding to a specific group
and signature). This should be the most useful part for researchers working on ques-
tions requiring computations of generating vectors, as these will no longer need to
be computed from scratch. Also, the data can be searched over a variety of fields
such as signature, or dimension of the family, or whether the family is hyperelliptic.

5. Future Work

We plan to add additional information to the database. Here are a few examples.

5.1. Equivalence Relations. Suppose we have two actions η1 : Γ → G and η2 :
Γ→ G. We would like to determine when these are the “same” action analytically
(conformally) or topologically. Two actions η1 and η2 are conformally equivalent

if there is some ω ∈ Aut(G) and h̃ ∈ Aut(H) = PSL(2,R) so that the following
diagram commutes

K −−−−→ Γ
η1−−−−→ Gyh̃∗

yh̃∗

yω
K −−−−→ Γ

η2−−−−→ G
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where h̃∗ is the map that takes some γ ∈ K or ∈ Γ and sends it to h̃γh̃−1

[Broughton, 1991]. This definition induces a conformal mapping h : X → X where
X = H/K.

Two actions η1 and η2 are topologically equivalent if there exists an ω ∈ Aut(G)
and φ ∈ Aut+(Γ) so that the following diagram commutes [Broughton, 1991].

Γ
η1−−−−→ Gyφ yω

Γ
η2−−−−→ G

.

Notice this means that η2 = ω ◦ η1 ◦ φ−1 where φ is an element of Aut+(Γ)
and ω ∈ Aut(G). As such, two actions are topologically equivalent precisely when
they are in the same orbit under the action of Aut(G)×Aut+(Γ) [Broughton, 1991,
Proposition 2.2].

This translates the definition of topologically equivalent to an algebraic condi-
tion, and using this result for cases where g0 = 0, code is implemented in Sage
[Behn et al., 2015] which computes the orbits under this action, and returns one
representative of each orbit. We plan to use their code to connect examples already
in LMFDB which are topologically equivalent.

In the study of Hurwitz spaces (and the related inverse Galois problem) generat-
ing vectors up to the action of Inn(G)×Aut+(Γ) are instead used. We also plan to
collect together on each refined passport page generating vectors in the same orbit
under this action.

5.2. Quotient curves other than P1. Currently all the data is for g0 = 0.
Breuer’s data does include all possible cases where the quotient curve is higher
genus, and the code written from algorithms in [Ries, 1993] will also determine if
these actions describe the full automorphisms for a given family. However, there are
a few small changes to the individual pages on LMFDB which will need to be made
before including this data. For instance, the generating vector now must include
2g0 hyperbolic generators, and some of the additional information computed will
be different for these coverings.

5.3. Other topics.

• David Swinarski and I plan to add additional information computed in
[Swinarski, 2016]
• There is much current research on superelliptic curves, and we could incor-

porate known data about these families into LMFDB.
• The Riemann matrix and corresponding period matrix are crucial objects

for understanding certain computational properties of Riemann surfaces.
• It would be nice to determine the fields of definition of these curves.
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