Problem 1: Find the minimal polynomial of each of the following over \(\mathbb{Q} \).
 a. \(3\sqrt{2} + 1 \)
 b. \(\sqrt{2} - \sqrt{2} \)
 c. \(\sqrt{3} - 2\sqrt{2} \).

Problem 2:
 a. Show that \(x^5 + x^2 + 1 \in (\mathbb{Z}/2\mathbb{Z})[x] \) is irreducible in \((\mathbb{Z}/2\mathbb{Z})[x] \).
 b. Show that \(3x^5 + 10x^4 - x^2 + 5 \) is irreducible in \(\mathbb{Q}[x] \).

Problem 3: Let \(p(x) = x^3 + 9x + 6 \in \mathbb{Q}[x] \).
 a. Show that \(p(x) \) is an irreducible polynomial in \(\mathbb{Q}[x] \) with a unique real root.
 b. Let \(\alpha \) be any root of \(p(x) \). We know that
 \[
 \mathbb{Q}(\alpha) = \{ a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q} \}
 \]
 Find the multiplicative inverse of \(1 + \alpha \in \mathbb{Q}(\alpha) \) and write it in the form \(a + b\alpha + c\alpha^2 \) where \(a, b, c \in \mathbb{Q} \).

Problem 4: Let \(\pi \in \mathbb{Z}[i] \) be prime and let \(I = \langle \pi \rangle \). Show that \(\alpha^{N(\pi)} + I = \alpha + I \) for all \(\alpha \in \mathbb{Z}[i] \).
 Hint: This should resemble an important fact about \(\mathbb{Z} \).

Problem 5: Let \(R \) be a UFD with finitely many units. Show that every nonzero element \(r \) has finitely many divisors in \(R \), and give a formula for the number of such divisors based on a factorization of \(r \) into irreducibles.

Problem 6: Determine all \((x, y) \in \mathbb{Z}^2 \) satisfying \(x^3 = y^2 + 4 \).
 Hint: Break this up into cases based on whether \(y \) is even or odd. When \(y \) is even, make use of Problem 5 on Homework 6.