Homework 3 : Due Wednesday, February 15

Problem 1: Follow the proof of the Chinese Remainder Theorem (with several moduli) in the notes to find all \(x \in \mathbb{Z} \) that simultaneously satisfy the following three congruences:

\[
\begin{align*}
 x &\equiv 1 \pmod{7} \\
 x &\equiv 4 \pmod{9} \\
 x &\equiv 3 \pmod{5}
\end{align*}
\]

Problem 2: Show that \(n^{91} \equiv n^7 \pmod{91} \) for all \(n \in \mathbb{Z} \).

Problem 3: Prove the converse to Wilson’s Theorem: If \(n \geq 2 \) and \((n - 1)! \equiv -1 \pmod{n} \), then \(n \) is prime.

Problem 4: Define \(\sigma : \mathbb{N}^+ \to \mathbb{N}^+ \) by letting \(\sigma(n) \) be the sum of all positive divisors of \(n \). In other words,

\[
\sigma(n) = \sum_{d \mid n} d
\]

For example, \(\sigma(6) = 1 + 2 + 3 + 6 = 12 \).

a. Suppose that \(m \) and \(n \) are relatively prime. Let \(d \in \mathbb{N}^+ \) be such that \(d \mid mn \). Show that there exist unique \(a, b \in \mathbb{N}^+ \) such that \(d = ab \), \(a \mid m \), and \(b \mid n \). Avoid using the Fundamental of Arithmetic if possible.

b. Use part a to show that \(\sigma(mn) = \sigma(m) \cdot \sigma(n) \) whenever \(m, n \in \mathbb{N}^+ \) satisfy \(\gcd(m, n) = 1 \).

c. Give a closed form formula for \(\sigma(p^k) \) whenever \(p \in \mathbb{N}^+ \) is prime and \(k \in \mathbb{N}^+ \).

d. Use parts b and c to give a formula for \(\sigma(n) \) in terms of the prime factorization of \(n \).

Problem 5: Let \(R \) be a commutative ring. An idempotent of \(R \) is an element \(e \in R \) such that \(e^2 = e \). For example, 0, 1 \(\in R \) are always idempotents. In \(\mathbb{Z}/6\mathbb{Z} \), both \(\overline{3} \) and \(\overline{4} \) are idempotents distinct from \(0 \) and \(1 \).

a. Show that if \(R \) is an integral domain, then the only idempotents of \(R \) are 0 and 1.

b. Let \(p \) be prime and \(k \geq 1 \). Show that the only idempotents in \(\mathbb{Z}/p^k\mathbb{Z} \) are \(0 \) and \(1 \).

c. Show that if \(n \) is not a prime power, then there exists an idempotent in \(\mathbb{Z}/n\mathbb{Z} \) other than \(0 \) and \(1 \). Give a formula for the number of such idempotents in terms of the prime factorization of \(n \).

Hint for c: Instead of trying to “build” idempotents in \(\mathbb{Z}/n\mathbb{Z} \) directly, work in an isomorphic ring.

Problem 6:

a. Show that \(\varphi(n) \) is even for all \(n \geq 3 \).

b. Show that \(\lim_{n \to \infty} \varphi(n) = \infty \). In other words, show that for every \(m \in \mathbb{N}^+ \), there are only finitely many \(n \in \mathbb{N}^+ \) with \(\varphi(n) \leq m \).