Homework 5: Due Wednesday, September 8

Problem 1: Let \(f_n \) be the \(n^{th} \) Fibonacci number as defined in Problem 2 on Homework 3. Show that \(\gcd(f_n, f_{n+1}) = 1 \) for all \(n \in \mathbb{N}^+ \).

Problem 2: Let \(a, b, c \in \mathbb{Z} \) with \(a > 0 \). Show that \(\gcd(ab, ac) = a \cdot \gcd(b, c) \).

Problem 3: Let \(a, b, c \in \mathbb{Z} \). Show that the following are equivalent:
- \(\gcd(ab, c) = 1 \)
- \(\gcd(a, c) = 1 \) and \(\gcd(b, c) = 1 \)

Problem 4: Let \(a, b \in \mathbb{N}^+ \) and let \(d = \gcd(a, b) \). Since \(d \) is a common divisor of \(a \) and \(b \), we may fix \(k, \ell \in \mathbb{N} \) with \(a = kd \) and \(b = \ell d \). Let \(m = k \ell d \).
 a. Show that \(a \mid m, b \mid m, \) and \(dm = ab \).
 b. Show that \(\gcd(k, \ell) = 1 \).
 c. Suppose that \(n \in \mathbb{Z} \) is such that \(a \mid n \) and \(b \mid n \). Show that \(m \mid n \).

Because of parts a and c above, the number \(m \) is called the least common multiple of \(a \) and \(b \) and is written as \(\operatorname{lcm}(a, b) \). Since \(dm = ab \) from part a, it follows that \(\gcd(a, b) \cdot \operatorname{lcm}(a, b) = ab \).