Problem Set 9

Problem 1: Show that

\[3a^4 - 4a^3b + b^4 \geq 0 \]

for all \(a, b \in \mathbb{R} \).

Problem 2: Show that it is never possible to partition a set of six consecutive integers into two subsets in such a way that the least common multiple of the number in one subset is equal to the least common multiple of the numbers in the other.

*Problem 3: Determine if there exists an infinite sequence \((a_n)\) of positive integers having all of the following properties:

- \(a_m \nmid a_n \) whenever \(m \neq n \).
- \(\gcd(a_m, a_n) > 1 \) for all \(m, n \).
- \(\gcd\{a_n : n \in \mathbb{N}\} = 1 \).

*Problem 4: Let \(n \geq 2 \) and let \(T_n \) be the number of nonempty subsets \(S \) of \(\{1, 2, 3, \ldots, n\} \) with the property that the average of the elements of \(S \) is an integer. Prove that \(T_n - n \) is always even.

*Problem 5: Suppose that the sequence \(a_1, a_2, a_3, \ldots \) satisfies \(0 < a_n \leq a_{2n} + a_{2n+1} \) for all \(n \geq 1 \). Prove that the series \(\sum_{n=1}^{\infty} a_n \) diverges.

*Problem 6: Is there a polynomial \(P(x) \) with integer coefficients such that \(P(10) = 400 \), \(P(14) = 440 \), and \(P(18) = 520 \)?