Homework 9 : Due Monday, March 12

Problem 1: Let \(n \in \mathbb{N}^+ \).
 a. Evaluate \(\sum_{k=0}^{n} c(n, k) \)
 b. Evaluate \(\sum_{k=0}^{n} 2^k c(n, k) \)

Problem 2: On Homework 7, you showed that
 \[S(n, n - 2) = \binom{n}{3} + 3 \cdot \binom{n}{4} \]
 for all \(n \geq 3 \). Now show that
 \[c(n, n - 2) = 2 \cdot \binom{n}{3} + 3 \cdot \binom{n}{4} \]
 for all \(n \geq 3 \).

Problem 3: Let \(\ell, n \in \mathbb{N}^+ \) with \(\ell \leq n \). If \(\sigma \) is a permutation of \([n]\), then we say that \(i \in [n] \) is a fixed point of \(\sigma \) if \(\sigma(i) = i \). How many permutations of \([n]\) have exactly \(\ell \) fixed points?

Problem 4: How many different ways can you place seven distinct ornaments on three identical circular wreaths? Allow the possibility that some wreaths have no ornaments on them.

Problem 5: Let \(n \in \mathbb{N}^+ \).
 a. How many ways are there to break up \(3n \) people into \(n \) groups of size 3 (where there is no ordering amongst the groups)? Simplify your answer as much as possible.
 b. How many permutations of \([3n]\) consist of \(n \) distinct 3-cycles?
 c. Explain why your answers in parts a and b are different.

Problem 6: Suppose that \(\sigma \) is a permutation of \([n]\). Define an \(n \times n \) matrix \(M(\sigma) \) by letting
 \[M(\sigma)_{i,j} = \begin{cases} 1 & \text{if } \sigma(j) = i \\ 0 & \text{otherwise} \end{cases} \]
 a. Let \(n = 4 \), let \(\sigma = (1 2 3)(4) \) and let \(\tau = (1 2)(3 4) \). Write down \(M(\sigma) \), \(M(\tau) \), and \(M(\sigma \circ \tau) \).
 b. Show that \(M(\sigma \circ \tau) = M(\sigma) \cdot M(\tau) \) for all permutations \(\sigma \) and \(\tau \) of \([n]\) (not just those in part a).