Written Assignment 9 : Due Wednesday, April 27

Problem 1: Find values of c and d such that the matrix

\[
\begin{bmatrix}
3 & 1 \\
c & d
\end{bmatrix}
\]

has both 4 and 7 as eigenvalues. You should show the derivation for how you arrived at your choice.

Problem 2: Let A be an $n \times n$ idempotent matrix.

a. Show that $\text{Null}(A) \cap \text{Col}(A) = \{0\}$.

b. Show that for every $v \in \mathbb{R}^n$, there exists $u \in \text{Null}(A)$ and $w \in \text{Col}(A)$ with $v = u + w$.

Problem 3: Define a sequence of numbers as follows. Let $g_0 = 0$, $g_1 = 1$, and $g_n = \frac{1}{2}(g_{n-1} + g_{n-2})$ for $n \geq 2$. In other words, the n^{th} term of the sequence is the average of the two previous terms.

a. Find a general equation for g_n.

b. As n gets large, the values of g_n approach a fixed number. Find that number.

c. Suppose that you change the initial starting values of g_0 and g_1. As n gets large, must the terms of the sequence still approach a fixed number? If so, explain why and determine that number in terms of g_0 and g_1. If not, find an example where the terms of sequence do not approach one fixed number.