Written Assignment 3 : Due Wednesday, February 16

Problem 1: Suppose that \(\{v_1, v_2, \ldots, v_n\} \) is a linearly independent set of vectors in \(\mathbb{R}^n \) (notice the same \(n \)). Explain why \(\text{Span}\{v_1, v_2, \ldots, v_n\} = \mathbb{R}^n \).

Problem 2: Suppose that \(\{v_1, v_2, \ldots, v_k\} \) is a linearly independent set of vectors in \(\mathbb{R}^n \). Suppose that \(c_i \) and \(d_i \) are scalars such that:

\[
 c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = d_1 v_1 + d_2 v_2 + \ldots d_k v_k
\]

Show that \(c_i = d_i \) for all \(i \).

Problem 3: Suppose that \(T: \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a linear transformation. Suppose that \(u \in \text{Span}\{v_1, v_2, \ldots, v_k\} \). Show that \(T(u) \in \text{Span}\{T(v_1), T(v_2), \ldots, T(v_k)\} \).