Problem Set 6: Due Monday, September 22

Note: In Problems 1 and 4, please underline or write in a different color the parts that go into the blanks.

Problem 1: Fill in the blanks below with appropriate phrases so that the result is a correct proof of the statement following statement: If \(\vec{u}, \vec{w} \in \mathbb{R}^2 \) and \(\vec{w} \in \text{Span}(\vec{u}) \), then \(\text{Span}(\vec{u}) \subseteq \text{Span}(\vec{w}) \).

Let \(\vec{v} \in \text{Span}(\vec{w}) \) be arbitrary. Since \(\vec{w} \in \text{Span}(\vec{u}) \), we can \(\vec{v} = \lambda \vec{w} \). Since \(\lambda \in \mathbb{R} \), we conclude that \(\vec{v} \in \text{Span}(\vec{u}) \) since \(\vec{v} = \lambda \vec{w} \). Now notice that \(\vec{v} = \lambda \vec{w} \). Since \(\lambda \in \mathbb{R} \), we conclude that \(\vec{v} \in \text{Span}(\vec{u}) \). Since \(\vec{v} \in \text{Span}(\vec{u}) \) was arbitrary, the result follows.

Problem 2: Given \(\vec{u} \in \mathbb{R}^2 \), is the set \(\text{Span}(\vec{u}) \) always closed under componentwise multiplication? In other words, if

\[
\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \in \text{Span}(\vec{u}) \quad \text{and} \quad \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \in \text{Span}(\vec{u}),
\]

must it be the case that

\[
\begin{pmatrix} a_1 a_2 \\ b_1 b_2 \end{pmatrix} \in \text{Span}(\vec{u})?
\]

Either argue that this is always true, or provide a specific counterexample (with justification).

Problem 3: Let \(\vec{u}_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \) and let \(\vec{u}_2 = \begin{pmatrix} 5 \\ 1 \end{pmatrix} \).

a. Show that \(\text{Span}(\vec{u}_1, \vec{u}_2) = \mathbb{R}^2 \).

b. Find the coordinates of \(\begin{pmatrix} 5 \\ 1 \end{pmatrix} \) relative to \(\vec{u}_1 \) and \(\vec{u}_2 \). In other words, calculate \(\text{Coord}(\vec{u}_1, \vec{u}_2) \left(\begin{pmatrix} 5 \\ 1 \end{pmatrix} \right) \).

c. Find the coordinates of \(\begin{pmatrix} 8 \\ 17 \end{pmatrix} \) relative to \(\vec{u}_1 \) and \(\vec{u}_2 \). In other words, calculate \(\text{Coord}(\vec{u}_1, \vec{u}_2) \left(\begin{pmatrix} 8 \\ 17 \end{pmatrix} \right) \).

In each part, briefly explain how you carried out your computation.

Problem 4: In this problem we work through the proof of Proposition 2.9 in the notes, which says the following: Let \(\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2 \). The following are equivalent.

1. \(\text{Span}(\vec{u}_1, \vec{u}_2) = \text{Span}(\vec{u}_1) \).

2. \(\vec{u}_2 \in \text{Span}(\vec{u}_1) \).

Fill in the blanks below with appropriate phrases so that the result is a correct proof:

We first show that 1 implies 2. Assume then that 1 is true, so assume that \(\text{Span}(\vec{u}_1, \vec{u}_2) = \text{Span}(\vec{u}_1) \). Notice that \(\vec{u}_2 = \lambda \vec{u}_1 \). Since \(\lambda \in \mathbb{R} \), it follows that \(\vec{u}_2 \in \text{Span}(\vec{u}_1) \). Since \(\text{Span}(\vec{u}_1, \vec{u}_2) = \text{Span}(\vec{u}_1) \), we conclude that \(\vec{u}_2 \in \text{Span}(\vec{u}_1) \).

We now show that 2 implies 1. Assume then that 2 is true, so assume that \(\vec{u}_2 \in \text{Span}(\vec{u}_1) \). By definition, we can \(\vec{u}_2 = \lambda \vec{u}_1 \). To show that \(\text{Span}(\vec{u}_1, \vec{u}_2) = \text{Span}(\vec{u}_1) \), we give a double containment proof.

- Using Proposition \(\text{Proposition 2.9} \), we know immediately that \(\text{Span}(\vec{u}_1) \subseteq \text{Span}(\vec{u}_1, \vec{u}_2) \).

- We now show that \(\text{Span}(\vec{u}_1, \vec{u}_2) \subseteq \text{Span}(\vec{u}_1) \). Let \(\vec{v} \in \text{Span}(\vec{u}_1, \vec{u}_2) \) be arbitrary. By definition we can \(\vec{v} = \lambda \vec{u}_1 + \mu \vec{u}_2 \). Notice that \(\vec{v} = \lambda \vec{u}_1 + \mu \vec{u}_2 \). Since \(\lambda, \mu \in \mathbb{R} \), it follows that \(\vec{v} \in \text{Span}(\vec{u}_1) \). Since \(\vec{v} \in \text{Span}(\vec{u}_1) \) was arbitrary, we conclude that \(\text{Span}(\vec{u}_1, \vec{u}_2) \subseteq \text{Span}(\vec{u}_1) \).

Since we have shown both \(\text{Span}(\vec{u}_1) \subseteq \text{Span}(\vec{u}_1, \vec{u}_2) \) and \(\text{Span}(\vec{u}_1, \vec{u}_2) \subseteq \text{Span}(\vec{u}_1) \), we conclude that \(\text{Span}(\vec{u}_1, \vec{u}_2) = \text{Span}(\vec{u}_1) \).