Problem Set 1: Due Friday, September 5

Problem 1: Let P be the plane in \mathbb{R}^3 containing the origin and both of the following two vectors:

\[
\vec{u} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \quad \text{and} \quad \vec{w} = \begin{pmatrix} -7 \\ 1 \\ 4 \end{pmatrix}
\]

In the notes, we discussed one way to parametrize P, and we will discuss this in more detail later. Now find an equation of the form $ax + by + cz = d$ for P. Explain your process using a sentence of two.

Problem 2: Let L be the line in \mathbb{R}^3 that is the intersection of the two planes $3x + 4y - z = 2$ and $x - 2y + z = 4$.

a. Using the equations of the planes, determine if the points $(1, 0, 1)$ and $(1, 1, 5)$ are on L.

b. Find a parametric description of L. Explain your process using a sentence or two.

c. Use the parametric description of L to determine if $(5, 2, 3)$ is a point on L. Explain.

Note: Given a point, it seems easier to determine if it is on L using the equations of the planes rather than the parametric description. In contrast, if you want to generate points on L, it is easier to use the parametric description (just plug in values for the parameter) than the plane equations.

Problem 3:

a. Do the planes with equations $2x - 3y + z = 7$ and $-4x + 9y - 2z = 3$ intersect? Explain your reasoning.

b. Do the lines described by the two parametric equations

\[
\begin{align*}
x &= -4 + 6t \\
y &= 2 + t \\
z &= 1 + 3t
\end{align*}
\quad \quad \begin{align*}
x &= 4 + 4t \\
y &= 5 - t \\
z &= 9 - 2t
\end{align*}
\]

intersect? Explain your reasoning.

Problem 4: Determine if the following are true or false. Justify your answers using complete sentences in each case.

a. There exists $x \in \mathbb{R}$ with $\sin x = \cos x$.

b. There exists $x \in \mathbb{R}$ with $\sin x = \cos x + 2$.

c. There exists $m, n \in \mathbb{N}$ with $9m + 15n = 3$.

d. There exists $m, n \in \mathbb{Z}$ with $9m + 15n = 3$.

e. For all $t \in \mathbb{R}$, we have

\[
2 \cos^2(3t) + 2 \cos^2(3t) \cdot \sin^2(3t) - \cos(6t) = 1.
\]

f. For all $a \in \mathbb{R}$, we have $a^2 + 6a + 10 > 0$. (Do not rely on a picture.)