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When Are All the Zeros of a Polynomial
Real and Distinct?

Marc Chamberland

Abstract. This note gives necessary and sufficient conditions for all the zeros of a single-
variable polynomial with real coefficients to be real and distinct.

There are many results that give information about the zeros of single-variable
polynomials with real coefficients. The theorems of Descartes, Fourier–Budan, and
Sturm—and other results—can be found in [1] and a careful study of the geometry of
a polynomial’s zeros is found in the classic book by Marden [6]. This note constructs
polynomial inequalities that are necessary and sufficient for all the zeros to be real and
distinct. The proof is elementary and the inequalities depend only on the polynomial
and its derivatives.

Let the expression P (j) denote the jth derivative of P . The main result follows.

Theorem 1. Let P be a polynomial of degree n ≥ 1 with real coefficients. Then the
zeros of P are real and distinct if and only if

(P (j)(x))2 − P (j−1)(x) P (j+1)(x) > 0 (1)

for all x ∈ R, j = 1, 2, . . . , (n− 1).

The two directions of the proof will be settled separately. We first prove that the
conditions are necessary.

Proof. (Theorem 1,⇒)
Write P as

P (x) = C(x− r1)(x− r2) · · · (x− rn)

for some real C 6= 0. By expanding the expression (P ′/P )′, one finds that

(P ′(x))2 − P (x)P ′′(x) = (P (x))2
[

1

(x− r1)2
+

1

(x− r2)2
+ · · ·+ 1

(x− rn)2

]
for all x except the zeros of P . Since the zeros are real, the right side is clearly positive
for real x except possibly at the zeros. Since the zeros are distinct, we have

lim
x→rk

(P (x))2
[

1

(x− r1)2
+

1

(x− r2)2
+ · · ·+ 1

(x− rn)2

]
= C2

n∏
i=1
i 6=k

(rk − ri)2 > 0

for k = 1, 2, . . . , n. This forces

(P ′(x))2 − P (x)P ′′(x) > 0

for all x ∈ R, thus settling the j = 1 case of the theorem. By using Rolle’s theorem
inductively, one sees that P (j) has n− j distinct, real zeros, so the preceding analysis
establishes the claim for j = 2, 3, . . . , (n− 1).
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This proof is essentially due to Laguerre. Indeed, Laguerre used these inequalities
to study a broader class of entire functions of genus zero and genus one now commonly
known as the Laguerre–Pólya class [8]. The inequalities (1) are usually referred to as
the Laguerre inequalities.

A similar necessary condition to (1) known as Newton’s inequality relates any three
consecutive coefficients in the polynomial; see [4, 9]. Translating that expression in
terms of derivatives of the polynomial, Newton’s inequalities can be written as

(P (j)(x))2 − P (j−1)(x) P (j+1)(x)

(
1 +

1

n− j

)
> 0

for all x ∈ R, j = 1, 2, . . . , (n− 1).
Note that if one only assumes that the zeros are real, the relation in (1) is replaced

by “≥.” This result can be found as an exercise in [2, E.5c, p. 22] and related to a
property of the Schwarzian derivative [3, p. 70]. While it is tempting to try to relax
the conditions in Theorem 1, care must be taken. The polynomial p(x) = x4 − 1 has
zeros x = ±1,±i, but satisfies

(p(j)(x))2 − p(j−1)(x) p(j+1)(x) ≥ 0

for all x ∈ R, j = 1, 2, 3.
To support a proof of the other direction of Theorem 1, we start with a lemma.

Lemma 1. Let Q be a polynomial that satisfies

(Q′(x))2 −Q(x)Q′′(x) > 0 (2)

for all x ∈ R. Then Q has at least one real zero, all its real zeros are distinct, Q′ has
one fewer real zero than Q, and the real zeros of Q and Q′ interlace.

Proof. Inequality (2) implies that Q is nonconstant and that any critical point of Q
must be either a positive local maximum or a negative local minimum; hence Q must
have a real zero. Inequality (2) also implies that Q’s real zeros must be distinct, oth-
erwise (Q′)2 −QQ′′ = 0 at a repeated zero. Let a1 < a2 < · · · < ak denote the real
zeros ofQ. By Rolle’s theorem, between each pair of adjacent zeros lies a real zero b of
Q′, and the earlier observation about critical points implies that b is unique. Moreover,
there cannot be a real zero b ofQ′ with b > ak since this would forceQ to have a pos-
itive local minimum or negative local maximum—impossible as discussed earlier—or
elseQ has a horizontal asymptote, impossible for a nonconstant polynomial. The same
argument implies that there cannot be a real zero b of Q′ with b < a1.

We now prove that the conditions in Theorem 1 are sufficient.

Proof. (Theorem 1,⇐)
We argue by induction on the degree n. The base case, n = 1, trivially holds.

Now assume that the theorem holds for a certain natural number n. If P is a poly-
nomial of degree n+ 1 that satisfies (1) for j = 1, 2, . . . , n, then P ′ satisfies (1) for
j = 1, 2, . . . , (n − 1), so by the inductive hypothesis, P ′ has n distinct, real zeros.
Applying the lemma to the function P , we have that P has n+ 1 distinct, real zeros.

The sufficiency condition (1) can be weakened by replacing it with the following:

P (j−1)(ξ)P (j+1)(ξ) < 0 if P (j)(ξ) = 0, where 1 ≤ j ≤ n− 1 and ξ ∈ R. (3)
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A careful examination of the lemma’s proof shows that replacing (2) with (3)—applied
to Q with j = 1— suffices to prove the lemma if one assumes that Q is a nonconstant
polynomial. The sufficiency proof requires no alteration. This alternate sufficiency
theorem using (3) is not new; it was highlighted by Pólya [7] who credits the result to
Jean Paul de Gua de Malves in 1741. Of course, whether one chooses to use condition
(1) or condition (3) depends on whether one wants to use necessary conditions or
sufficient conditions. Another sufficiency condition similar to Newton’s inequality is
given in [5].

Finally, when a polynomial’s zeros are not real and distinct, it is not clear which
conditions from Theorem 1 fail. The polynomial p(x) = x3 + x has one real and two
complex zeros, while (1) is satisfied for j = 1 and violated for j = 2. In contrast,
the polynomial p(x) = x3 − x+ 1 has one real and two complex zeros, while (1) is
satisfied for j = 2 and violated for j = 1.
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