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Abstract. Several product and sum identities are established with special cases involving
Fibonacci and Lucas numbers. These identities are derived from polynomial identities inspired
by the Binet formulas for Fibonacci and Lucas numbers.

In some recent papers [1], [2], [4], [5], [6], one finds product identities such as

(n−1)/2
∏

s=1

[

2 cos
(πs

n

)]

= 1, n odd (1.1)

and

(n−1)/2
∏

s=1

[

3 + 2 cos

(

2πs

n

)]

= Fn, n odd (1.2)

where Fn is the nth Fibonacci number. The goal of this note is to unify these and other
beautiful product or sum formulas as special instances of three polynomial identities. While
the three identities are special instances of the general equation

xn − yn =
n
∏

r=1

(

x− e2irπ/ny
)

,

the inspiration for the specialized cases arises from the familiar Binet formulas for Fibonacci
numbers Fn and Lucas numbers Ln. This approach contrasts with those of previously cited
papers which use lesser-known representations of the Fibonacci numbers.

The first formula is

⌊(n−1)/2⌋
∏

s=1

[

1 + (y2 − 1) cos2
(πs

n

)]

=
1

y

[(

1 + y

2

)n

−
(

1− y

2

)n]

(1.3)

for each natural number n. To prove that the polynomials on each side of the equation are
equal, it suffices to show that they have the same degree, the same zeros, and evaluate to the
same non-zero value at one point. Formula (1.3) holds since both sides have degree n−1 (resp.
n − 2) for n odd (resp. n even), share zeros at ±i tan(πs/n) for s = 1, . . . , ⌊(n − 1)/2⌋, and
evaluate to one at y = 1. Evaluating this formula at several values gives various identities.
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Sometimes these may be simplified if one uses a double-angle formula.

y =
√
5 :

⌊(n−1)/2⌋
∏

s=1

[

3 + 2 cos

(

2πs

n

)]

= Fn

y = i :

⌊(n−1)/2⌋
∏

s=1

[

−2 cos

(

2πs

n

)]

=















0, n ≡ 0 mod 4

(−1)(n−1)/4, n ≡ 1 mod 4

(−1)(n−2)/4, n ≡ 2 mod 4

(−1)(n−3)/4, n ≡ 3 mod 4

coefficient of
dominant term

:

⌊(n−1)/2⌋
∏

s=1

[

2 cos
(πs

n

)]

=

{ √

n/2, n even,
1, n odd

coefficient of
next dominant term

:

⌊(n−1)/2⌋
∑

s=1

tan2
(πs

n

)

=

{

(n/2− 1)(n− 1)/3, n even,
n(n− 1)/2, n odd

y → 0 :

⌊(n−1)/2⌋
∏

s=1

sin
(πs

n

)

=

√

n

2n−1

y =
√
3i :

⌊(n−1)/2⌋
∏

s=1

[

−1− 2 cos

(

2πs

n

)]

=







0, n ≡ 0, 3 mod 6
1, n ≡ 1, 2 mod 6

−1, n ≡ 4, 5 mod 6

coefficient of y2 :

⌊(n−1)/2⌋
∑

s=1

cot2
(πs

n

)

=
(n− 1)(n− 2)

6

y = 3 :

⌊(n−1)/2⌋
∏

s=1

[

5 + 4 cos

(

2πs

n

)]

=
1

3
[2n − (−1)n]

These identities may be found or derived from formulas in Hansen[3]. Specifically, the second
formula corresponds to (91.2.3), the third to (91.2.2), the fourth to (21.1.2), the fifth to
(91.1.4), the sixth to (91.2.9), and the seventh to (30.1.2). Note that the right side of the
eighth formula is always an integer.

Differentiating (1.3) gives

1

y
+

⌊(n−1)/2⌋
∑

s=1

2y cos2
(

πs
n

)

1 + (y2 − 1) cos2
(

πs
n

) =
n

2

(

1+y
2

)n−1
+
(

1−y
2

)n−1

(

1+y
2

)n
−
(

1−y
2

)n (1.4)

Specific choices yield

y =
√
5 : 1 + 10

⌊(n−1)/2⌋
∑

s=1

cos2
(

πs
n

)

3 + 2 cos
(

2πs
n

) =
nLn−1

2Fn

y = i :

⌊(n−1)/2⌋
∑

s=1

sec

(

2πs

n

)

=







(n− 1)/2, n ≡ 1 mod 4
0, n ≡ 2 mod 4

(−n− 1)/2, n ≡ 3 mod 4

y =
√
3i : 2

⌊(n−1)/2⌋
∑

s=1

cos2
(

πs
n

)

4 cos2
(

πs
n

)

− 1
=

{

(n− 1)/3, n ≡ 1 mod 3
(n− 2)/6, n ≡ 2 mod 3
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The second formula relates to Hansen’s (26.1.1) and (26.1.2).
The following polynomial equation involves the tan function and a sum of odd powers:

q
∏

s=1

[

1 + x2 tan2
(

2πs

2q + 1

)]

=
1

2

[

(1 + x)2q+1 + (1− x)2q+1
]

. (1.5)

This identity is proven with the same approach as before: both sides have degree 2q, share
zeros at x = ±i cot(2πs/(2q + 1)) for s = 1, . . . , q, and evaluate to one when x = 0. Special
choices include

x =
√
5 :

q
∏

s=1

[

1

4
+

5

4
tan2

(

2πs

2q + 1

)]

= L2q+1

x = 1 :

q
∏

s=1

[

2 cos

(

2πs

2q + 1

)]

=

{

1, q ≡ 0, 3 mod 4
−1, q ≡ 1, 2 mod 4

x = i :

q
∏

s=1

[

1

2
− 1

2
tan2

(

2πs

2q + 1

)]

=

{

1, q ≡ 0, 3 mod 4
−1, q ≡ 1, 2 mod 4

coefficient of
dominant term

:

q
∏

s=1

tan

(

2πs

2q + 1

)

=

{ √
2q + 1, q ≡ 0, 3 mod 4

−√
2q + 1, q ≡ 1, 2 mod 4

coefficient of
next dominant term

:

q
∑

s=1

cot2
(

2πs

2q + 1

)

=
q(2q + 1)

3

x =
√
3i :

q
∏

s=1

[

1

4
− 3

4
tan2

(

2πs

2q + 1

)]

=

{

1, q ≡ 0, 2 mod 3
−2, q ≡ 1 mod 3

The fourth formula relates to Hansen (91.3.3).
Differentiating (1.5) gives

q
∑

s=1

2x tan2
(

2πs
2q+1

)

1 + x2 tan2
(

2πs
2q+1

) = (2q + 1)
(1 + x)2q − (1− x)2q

(1 + x)2q+1 + (1− x)2q+1
(1.6)
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This produces the special cases

x =
√
5 :

q
∑

s=1

tan2
(

2πs
2q+1

)

1 + 5 tan2
(

2πs
2q+1

) =
(2q + 1)F2q

4L2q+1

x = 1 :

q
∑

s=1

sin2
(

2πs

2q + 1

)

=
2q + 1

4

x = i :

q
∑

s=1

tan2
(

2πs
2q+1

)

1− tan2
(

2πs
2q+1

) =

{

−2q+1
2 , q even
−1

2 , q odd

coefficient of x :

q
∑

s=1

tan2
(

2πs

2q + 1

)

= (2q + 1)q

x =
√
3i :

q
∑

s=1

tan2
(

2πs
2q+1

)

1− 3 tan2
(

2πs
2q+1

) =







0, q ≡ 0 mod 3
−(2q + 1)/8, q ≡ 1 mod 3
−(2q + 1)/4, q ≡ 2 mod 3

The last polynomial equation is similar to the second, but with even powers:

q
∏

s=1

[

1 + x2 tan2
(

π(2s− 1)

4q

)]

=
1

2

[

(1 + x)2q + (1− x)2q
]

. (1.7)

Special choices include

x =
√
5 :

q
∏

s=1

[

1

4
+

5

4
tan2

(

π(2s− 1)

4q

)]

=
L2q

2

x = 1 :

q
∏

s=1

[

2 cos

(

π(2s− 1)

4q

)]

=
√
2

x = i :

q
∏

s=1

[

1

2
− 1

2
tan2

(

π(2s− 1)

4q

)]

=

{

0, q odd,

(−1)q/2, q even,

coefficient of
dominant term

:

q
∏

s=1

tan

(

π(2s− 1)

4q

)

= 1

coefficient of
next dominant term

:

q
∑

s=1

cot2
(

π(2s− 1)

4q

)

= q(2q − 1)

x =
√
3i :

q
∏

s=1

[

1

4
− 3

4
tan2

(

π(2s− 1)

4q

)]

=

{

−1/2, q ≡ 1, 2 mod 3
1, q ≡ 0 mod 3

The second formula relates to Hansen’s (91.2.6), the fourth formula with (91.3.5), and the fifth
formula with (30.1.5).
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Differentiating (1.7) gives

q
∑

s=1

x tan2
(

π(2s−1)
4q

)

1 + x2 tan2
(

π(2s−1)
4q

) = q
(1 + x)2q−1 − (1− x)2q−1

(1 + x)2q + (1− x)2q
(1.8)

This produces the special cases

x =
√
5 :

q
∑

s=1

tan2
(

π(2s−1)
4q

)

1 + 5 tan2
(

π(2s−1)
4q

) =
qF2q−1

2L2q

x = 1 :

q
∑

s=1

sin2
(

π(2s− 1)

4q

)

=
q

2

x = i :

q
∑

s=1

tan2
(

π(2s−1)
4q

)

1− tan2
(

π(2s−1)
4q

) = −q

2
, q even

coefficient of x :

q
∑

s=1

tan2
(

π(2s− 1)

4q

)

= (2q − 1)q

x =
√
3i :

q
∑

s=1

tan2
(

π(2s−1)
4q

)

1− 3 tan2
(

π(2s−1)
4q

) =







−q/4, q ≡ 0 mod 3
−q/2, q ≡ 1 mod 3

0, q ≡ 2 mod 3

The third formula relates to Hansen’s (21.1.4).
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