FINITE TRIGONOMETRIC PRODUCT AND SUM IDENTITIES

MARC CHAMBERLAND

ABSTRACT. Several product and sum identities are established with special cases involving
Fibonacci and Lucas numbers. These identities are derived from polynomial identities inspired
by the Binet formulas for Fibonacci and Lucas numbers.

In some recent papers [1], [2], [4], [5], [6], one finds product identities such as

H [2 cos (%8)} =1, nodd (1.1)

and

(n=1)/2 9
H [3 + 2cos (n)] = F,, n odd (1.2)

s=1

where F,, is the n'® Fibonacci number. The goal of this note is to unify these and other
beautiful product or sum formulas as special instances of three polynomial identities. While
the three identities are special instances of the general equation

n

" — yn — H (.13 - e2ir7r/ny> 7

r=1

the inspiration for the specialized cases arises from the familiar Binet formulas for Fibonacci
numbers F, and Lucas numbers L,. This approach contrasts with those of previously cited
papers which use lesser-known representations of the Fibonacci numbers.

The first formula is

L(ni_l[)ﬂJ 1 7 = e <%8>} _ ; Kl—;yy‘ _ (1;0)”] (1.3)

s=1

for each natural number n. To prove that the polynomials on each side of the equation are

equal, it suffices to show that they have the same degree, the same zeros, and evaluate to the

same non-zero value at one point. Formula (1.3) holds since both sides have degree n—1 (resp.

n — 2) for n odd (resp. n even), share zeros at +itan(ws/n) for s = 1,...,[(n —1)/2], and

evaluate to one at y = 1. Evaluating this formula at several values gives various identities.
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Sometimes these may be

y=5

coefficient of
dominant term -

coefficient of
next dominant term

y—0:

y=3i:

coefficient of g2 :

y=3:
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simplified if one uses a double-angle formula.
[(n=1)/2] ¢

: 3+2cos<2w8>] = F,
s=1 - "
0, n=0mod 4
[(n=1)/2] ¢ , s (=1)(»=D/4 n=1mod 4
! _— cos <n>} = (_1)(n—2)/4’ n =2 mod 4
s= (_1)(71*3)/4’ n =3 mod 4
(n—1)/2] _QCOS (E)} B n/2, n even,
! n/l" 1, nodd
L(nilj)/% o2 <7L‘9> [ (n/2—-1)(n—1)/3, n even,
> an” (— | = n(n —1)/2, nodd
[(n—1)/2] s n
H sin (;) - 2n—1
s=1
[(n=1)/2] s 0 n =03 mod 6
[_1—2005 ()} = 1, n=1,2mod 6
e n -1, n=4,5mod 6
IS e () -
s=1 0
[(n—1)/2]
27s 1., n
51;[1 [54—4005 (n)] —3[2 —(=1)"]

These identities may be found or derived from formulas in Hansen[3]. Specifically, the second
formula corresponds to (91.2.3), the third to (91.2.2), the fourth to (21.1.2), the fifth to
(91.1.4), the sixth to (91.2.9), and the seventh to (30.1.2). Note that the right side of the
eighth formula is always an integer.
Differentiating (1.3) gives

[(n—1

S

Specific choices yield

y=V5:

>

s=1

/2]

08 (—s) nL,_1
1+10 n =
; 3+ 2cos (%) 2F,
l(n—1)/2] (n—1)/2, n=1mod 4
sec <27r3): 0, n=2mod4
s=1 " (—n—1)/2, n=3mod 4
[(n—1)/2] s

(n—1)/3, n=1mod 3
(n—2)/6, n=2mod3

{

(1.4)
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The second formula relates to Hansen’s (26.1.1) and (26.1.2).
The following polynomial equation involves the tan function and a sum of odd powers:

This identity is proven with the same approach as before: both sides have degree 2q, share
zeros at x = +icot(2ws/(2q + 1)) for s = 1,...,q, and evaluate to one when x = 0. Special
choices include

=15 f[ -1+§tan2 2ms L
— ] 1 2q+ 1 — L2q+1
q
B 27s - 1, ¢=0,3 mod 4
=1 H1 2COS<2q 1 _{—1, ¢=1,2 mod 4
L
q
1. o 2ms _ 1, ¢=0,3mod4
vt Hl 5 ~ptan <2q+1>]{1, g=1,2mod 4
1L
coefficient of ﬁ tan 2s \ V2q¢+1, ¢=0,3 mod4
dominant term 1 2¢+1) | —vV2¢+1, ¢=1,2mod 4
sS=
coefficient of ico‘f 2rs \  q(2q+1)
next dominant term — 2q+1) 3
q
e 1 3, of 2ms - 1, ¢=0,2mod 3
x=1/3i: H[4—4tan <2q+1>]_{—27 ¢=1mod 3

The fourth formula relates to Hansen (91.3.3).
Differentiating (1.5) gives

q 2 tan? ( s )

Z 2q+1

=1 1+ 22 tan? (22q7f1)

(14 2)% — (1 —x)%
(1 +2)20+1 + (1 — z)2a+1

=(2¢+1) (1.6)




4 MARC CHAMBERLAND

This produces the special cases

2 21
4 tan (2q+sl) (2(] + 1>F2q
z=+5: = 7
s—1 1+ 5tan? (%) 4Log11
q
27s 2g+1
=1: in? =
x 3 sin <2q & 1) :
s=1
2 (2
. 9  tan (2531) 2q;r1’ g even
- ) 3. qodd

q
2
coefficient of x : Ztam2 ( qws > =(2¢+1)q

2g+1
s=1
q tan? (;q’_rfl) 0, ¢g=0mod 3
r=3i: Z 5 =<¢ —(2¢+1)/8, ¢=1mod 3
=1 1 — 3tan? (quri) —(2¢+1)/4, ¢g=2mod 3

The last polynomial equation is similar to the second, but with even powers:

q

11 [1+x2tan2 (“2‘;_1))] = % [(1+2)% + (1 —2)*]. (1.7)

s=1

Special choices include

q -
- 1 1, ,(n(2s—1)
r=1: Il _§—§tan <4q>:|
coefficient of 1 <7T(28 — 1))
: I | tan | ——— ) =1

dominant term

. q
coefficient of : ZcotQ <7T(251)> =q(2¢—1)

next dominant term

cov L[ St ()] 2 gz 2w

1, ¢=0mod 3

0, ¢ odd,
(—1)9/2, g even,

The second formula relates to Hansen’s (91.2.6), the fourth formula with (91.3.5), and the fifth
formula with (30.1.5).
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Differentiating (1.7) gives

q xtan2 (W(Q%qil)) (1 + ;U)Qq_l _ (1 - x)Qq_l
=4q
s—1 1+ 22 tan? (”(Q%q_l)) (14 )%+ (1 —x)%

This produces the special cases

q tan (M) P
v =5 4q _ qF2g-1

s—1 1+ 5tan? (”(2%(;1)) 2L

ro1- ZSI ( 25—1))_

2 [ ™(2s—1)
tan <74q ) q
—=,q even

q
Tr = Z . = s
e

l\D\»Q

! 9 [(m(2s —1)
coefficient of x : Ztan () =(2¢—1)q

s=1 4q
a tan? (”(2%;1» —q/4, ¢=0mod 3
z=3i: T —q/2, q = 1 mod 3
s—1 1 — 3tan? TR 0, ¢g=2mod3

The third formula relates to Hansen’s (21.1.4).
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