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1. INTRODUCTION

Directed graphs with an odd number of vertices n, where each vertex has
both (n — 1)/2 incoming and outgoing edges, have a rich structure. We
were lead to their study by both the Borromean rings and the game rock-
paper-scissors. An interesting interplay between groups, graphs, topological
links, and matrices reveals the structure of these objects, and for larger
values of n, extensive computation produces some surprises. Perhaps most
surprising is how few of the larger graphs have any symmetry and those with
symmetry possess very little. In the final section, we dramatically sped up
the computation by first computing a “profile” for each graph.

2. THREE WEAPONS

Let’s start with the two-player game rock-paper-scissors or RPS(3). The
players simultaneously put their hands in one of three positions: rock (fist),
paper (flat palm), or scissors (fist with the index and middle fingers sticking
out). The winner of the game is decided as follows: paper covers rock, rock
smashes scissors, and scissors cut paper.

Mathematically, this game is referred to as a balanced tournament: with
an odd number n of weapons, each weapon beats (n—1)/2 weapons and loses
to the same number. This mutual dominance/submission connects RPS(3)
with a seemingly disparate object: Borromean rings.

FiGUrRE 1. Borromean Rings.
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The Borromean rings in Figure 1 consist of three unknots in which the
red ring lies on top of the blue ring, the blue on top of the green, and the
green on top of the red. Since each ring is above one ring and below another,
balance is evident here as with RPS(3).

Versions of the Borromean rings have appeared in diverse cultures, from
a symbol used in religion (Buddhist and Hindu temples and the Christian
trinity) to company logos. The name comes from their use in the coat of
arms of the aristocratic Borromeo family in Northern Italy; see Figure 2.

FIGURE 2. Borromean coat of arms, beer logo, and at a
Shinto shrine.

How many different balanced tournaments are there? This is most easily
seen — see Figure 3 — by representing the weapons as vertices in a directed
graph, where flow in the edges indicate dominance. To ensure that balance
is maintained, the only remaining possibility is to reverse the directions; so
there are exactly two balanced tournaments. Another way to see this is to
use the automorphisms of the graph, that is, the relabellings of the vertices
that produce the same directed edges. Since, in Figure 3, these are the
cycles (123), (132) and the identity permutation, the automorphism group
of the graph is the cyclic subgroup C5 of the permutation group S3. This
implies that the number of balanced graphs is |S3|/3 = 2.

1

FIGURE 3. RPS(3) graph.
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These two graphs, however, are essentially the same graph. One is ob-
tained from the other by relabelling the vertices, that is, the graphs are
isomorphic. This may be seen algebraically by using the adjacency matrices
of the graphs. Construct the 3 x 3 matrix whose (i, j)-entry is 1 if an edge is
directed from vertex i to vertex j and 0 otherwise. Thus, corresponding to
each balanced tournament with n weapons there is a balanced matriz, that
is, an n x n 0-1 matrix (with n odd) satisfying the following properties:

e cach row and each column contains exactly (n — 1)/2 ones with the
rest of the entries zero,

® a;;+aj; =1 whenever i # j.

The only 3 x 3 balanced matrices are A and AT, where

010
A=10 0 1
1 00

The matrices correspond to the two graphs mentioned earlier. One is a
relabelling of the other since the matrices are permutation similar:

A=pATp-1

where P is the permutation matrix

P=

O = O
o O =
— o O

3. FiIvE WEAPONS

Rock-paper-scissors is much better known that its five-weapon cousin,
rock-paper-scissors-lizard-Spock, which we denote as RPS(5). In this game,
two new weapons are introduced: lizard (four fingers curled together and
the thumb forming the mouth) and Spock (hand gesture used by Vulcans in
Star Trek); see Figure 4 [3].

The five-weapon game was popularized by its mention on three episodes
of the television show The Big Bang Theory. The game is clearly balanced.
In the Borromean ring context, one can make five rings with the analogous
dominance properties. Figure 5 shows both a computer-generated image
and a solid made with Grinnell College’s 3D printer. This model was dis-
played at a juried exhibition for the Bridges 2013 conference in Enschede,
the Netherlands.

The graph representation of RPS(5) — shown in Figure 6 — is given with
the standard design for K5. How many distinct balanced graphs are there?
To answer this question, note that each edge of the black pentagon is part of
exactly one three-cycle while each edge of the red pentagon is part of exactly
two three-cycles. Hence, any automorphism of the graph must map outer
edges to outer edges and must retain their order. This implies the group of
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F1GURE 5. Borromean Five rings.

automorphisms is simply the cyclic subgroup C5 of the permutation group
S5. The number of distinct RPS(5) graphs is therefore 5!/5 = 24. Using the
matrix perspective, one finds there are 24 5 x 5 balanced matrices. These
matrices are all permutation similar, hence — up to relabelling — there is
a unique RPS(5) graph.

An oft-noted property of the standard three Borromean rings is that re-
moving any one ring frees the other two. This is an example of a Brunnian
link, that is, a link where removing any one component frees all the other
components. In the five-ring case, removing any one ring does not unlink the
others. However, sometimes removing two rings does the trick. A careful
analysis reveals that if two random rings are removed, there is a 50% chance
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FIGURE 6. RPS(5) graph.

that the remaining three rings are freed. From this perspective, a new, fair
two-player game could involve each player simultaneously removing a ring.
If they have chosen distinct rings and they all fall apart, Player 1 wins,
otherwise Player 2 wins.

4. SEVEN WEAPONS

Suppose now that one has seven weapons in a two-player game with each
weapon beating three others and losing to the remaining three. We refer
to this as RPS(7). Unlike RPS(3) and RPS(5), we will see that there are
non-isomorphic RPS(7) games.

In computing the 7 x 7 balanced matrices, we also compute their char-
acteristic polynomials, since matrices that are permutation similar have the
same characteristic polynomial, although not conversely. We find only three
distinct characteristic polynomials, and a further analysis shows that all 7x 7
balanced matrices with the same characteristic polynomials are permutation
similar. So there are exactly three non-isomorphic RPS(7) games.

As in the RPS(5) case, we seek the automorphism groups of each of the
three cases. To this end, we produce representative graphs whose symmetries
make their automorphism groups nearly transparent; see Figure 7. We refer
to the three graphs as the ThreeSeptagons, the HexagonalPyramid, and the
FanoPlane. The HexagonalPyramid gains its name by imagining the seventh
vertex as positioned above the center of the hexagon.
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FIGURE 7. Three RPS(7) graphs.

To convince the reader that the three graphs are non-isomorphic, the
corresponding matrices are

0111000 0101100 001010
0011100 001 0011 10 00 01
0001 11O 1001010 010100
ooo00111},j010010T1{f,{1T 10010
1000011 01 100T1FO0 011001
1100001 1001001 101100
1110000 1010100 0 00111

The characteristic polynomials of these matrices are
(z—3) (22 +2+2)3 (x—3)(a?+z+2)(a* + 223 + 522 + 4z + 1),
(z —3) (2% + 32° + 921 + 132° + 1122 + 52 + 1)

To determine the number of distinct balanced graphs with n = 7, we
calculate the automorphism groups of each of the three graphs. For the
ThreeSeptagons graph, the analysis is similar to that for the graph in the
n = 5 case. Kach edge of the black septagon in that digraph is part of
just one 3-cycle, each edge of the red septagon is part of two 3-cycles, and
each edge of the blue septagon is part of three 3-cycles. Therefore, any
isomorphism of the graph must map black edges to black edges in the same
order. That is, the group of automorphisms is the cyclic subgroup C7 of
57, so the number of distinct digraphs isomorphic to the ThreeSeptagons is
1S7|/7 = 720.

For the HexagonalPyramid, the argument is a bit more delicate. Edges
(1,2), (3,4), and (5,6) are part of three 3-cycles, the edges (1,4), (3,6) and
(5,2) are part of just one 3-cycle, and all other edges are part of two 3-cycles.
Vertex 7 has the unique property that every edge attached to it is part of

OO OO ==
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exactly two 3-cycles. Thus, any automorphism must map vertex 7 to itself
and must map the edges (1,2), (3,4), and (5,6) to themselves in the same
order. That is, the group of automorphisms is the cyclic subgroup of S7
generated by the product of 3-cycles (135)(246). So the number of distinct
RPS(7) digraphs isomorphic to the HexagonalPyramid is |S7|/|(135)(246)| =
7!/3 = 1680.

For the FanoPlane graph, we use the fact that every edge is part of exactly
two 3-cycles. Also, if (a,b) is an edge, then the 3-cycles it is part of can
be written (a, b, ¢) and (a, b, d), where (¢, d) is an edge; then (c,d) is part of
(c,d,e) and (c,d, f), where (e, f) is an edge; and (e, f) is part of (e, f,a) and
(e, f,b), which brings us back to edge (a,b). We use this pattern to construct
all the automorphisms. Fix some edge, say (3,4). Then any automorphism
must map this edge to some other edge, say (7,5). The pattern of edges
(a,b), (¢,d), (e, f) for these two edges is

(3,4),(1,5),(2,6) and (7,5),(3,2),(6,1),

respectively. Thus, an automorphism that maps 3 to 7 and 4 to 5 must map
1t03,51%t02,2to6, and 6 to 1. The remaining vertex 7 must therefore map
to the remaining vertex 4. That is, the unique automorphism mapping edge
(3,4) to (7,5) is the 7-cycle (3745261). Similarly, for each of the twenty-one
edges (a,b) of the FanoPlane graph, there is a unique automorphism that
maps (3,4) to (a,b), and these are all the automorphisms. So the number of
distinct digraphs isomorphic to the FanoPlane is |S7|/21 = 240. A further
analysis would show that the automorphism group is the semidirect product
of the cyclic group C5 acting on C.

The Borromean rings corresponding to the three RPS(7) cases are dis-
played in Figure 8.

FIGURE 8. Three 7-ring configurations.
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We saw that with five Borromean rings it is possible to remove two rings
and have the rest fall apart. In the seven Borromean rings scenario, some-
times removing three rings allows the remaining four rings to disengage.
However, the three non-isomorphic configurations behave differently on this
count. For the ThreeSeptagons, the probability that the removal of three
randomly chosen rings lets the remaining rings fall apart is 1/5. For the
HexagonalPyramid, this reduces to 3/35, and for the FanoPlane, this re-
duces, remarkably, to zero. Here is a challenge: Can you find even one set
of three rings in the middle figure that causes all the remaining rings to fall
apart? Hint: Use the corresponding graph in Figure 7.

5. MORE AND MORE WEAPONS

As n becomes larger, the number of non-isomorphic RPS(n) graphs in-
creases very rapidly. We defer here to the computer scientists who have
computed them up through n = 13; see [1, 2]. However, the 3-cycles that
proved useful in the preceding sections also help us to compute efficiently
the automorphism groups of all known RPS graphs.

Proposition 5.1. Each edge of an RPS(n) graph is part of at least one
3-cycle.

This property, whose proof we leave as an easy exercise for the reader,
has useful interpretations in our other contexts. For any two rings in a
ring configuration, there exists a third ring such that the set of three is
a linked, Borromean ring configuration. Hence, to completely unlink any
ring configuration, one must remove enough rings so that the corresponding
graph has no 3-cycles. The interpretation for balanced matrices is that their
third powers have no zero entries.

Theorem 5.2. Every vertez of an RPS(n) graph is part of exactly (n?—1)/8
3-cycles. The total number of 3-cycles in the graph is n(n? — 1)/24.

Proof. Let v be any vertex in the graph, and let E denote the set of directed
edges in the graph. Define

ow) ={w|(v,w) € B}, i(v) ={z|(z,v) € E}

(the set of out-neighbors and in-neighbors, respectively, of v). The number
of 3-cycles through v is just the number of edges directed from o(v) to
i(v). Since o(v) has (n — 1)/2 vertices and each is the initial vertex of (n —
1)/2 edges, the number of edges with initial vertex in o(v) is ((n —1)/2).
Furthermore, each pair of vertices in o(v) is joined by a directed edge, and
there are ((”_21)/ 2) of them. Hence, the number of edges directed from o(v)
to i(v) is ((n —1)/2)% — (("_21)/2) = (n? —1)/8. The second claim follows by
multiplying by n/3, which is the number of vertices divided by the number
of times each 3-cycle is counted. O
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We use these two results to help construct the “profile” of a graph. These
profiles dramatically accelerate the computation of each graph’s automor-
phism group. Given a vertex v in an RPS(n) graph G, we first define the
profile p, of that vertex. Given a 3-cycle ¢ =< v,w,z >, let p, . denote
the set of triples [cycles(v,w), cycles(w, x), cycles(x,v)], where cycles(a,b)
denotes the number of 3-cycles containing that edge. The proposition guar-
antees that the components of p, . are never zero. The profile p, is defined
to be the multiset consisting of all the triples p, .. By the theorem, the mul-
tiset p, contains (n? — 1)/8 elements. Now we can define p(G), the profile
of the graph GG, by grouping together vertices v with the same profile p,.
Specifically, p(G) is the set of ordered pairs (v-setg, pr) where v-sety is the
set of vertices v such that p, = pg. In particular, the first components of
these ordered pairs constitute a partition of the vertex set of G.

As an example, below is a typical profile for an RPS(9) graph. The prefix
m in m[a, b, c] indicates a triple [a, b, ¢] that occurs m times in the multiset.

{1}: {11,4,4], 3[3,2,4], 6[3,3,2]},

[1,4,4] ], 6
{2,3,4}: {1[2,2,2], 1]2,2,3], 1,[2,3,3], 1[2,4,3], 3[3,2,3], 3[3,3,2]},
{5,6,7}: {1[2,2,2], 3[2,3,3], 1[3,2,2], 3[3,2,3], 1[3,3,2], 1[3,4,2]},
2,3,3] J, 1
[2,3,2]

{8} : {6[2,3,3 4,2,3: [4,4,1]},
{9} : {3 2,3,4], 1[4,1,4], 3[4,3,2]}.

The first line claims that vertex 1 is the only vertex with the indicated
profile, while the second line indicates that vertices 2,3, and 4 share the
same profile. Note that since n = 9, the theorem asserts that each vertex is
part of ten 3-cycles. This means that the 3-cycle total in the profile for each
vertex equals 10. One sees this, for example, in the first line with 1+346
and in the second line with 1+1414+1+3-+3.

If G and H are both RPS(n) graphs, we say that p(G) and p(H) are equal
if they have the same set of ordered pairs (|v-sety|, px). That is, we compare
only the cardinalities of the vertex sets, not their contents. Thus, G and H
are isomorphic if and only if p(G) = p(H) and there is a permutation of the
vertices of H that maps each vertex set of p(H) to the corresponding vertex
set of p(G). In particular, a permutation of the vertices of G' that is in the
automorphism group of G maps each vertex set of p(G) to itself.

To construct the automorphism group for the example above, one would
normally need to check 9! permutations of the vertices. With the insight
gained from the profile, however, one need only check (3!)? permutations, a
significantly smaller number.

It would be reasonable to guess that as n increases, the quantity and com-
plexity of the automorphism groups would grow dramatically. Remarkably,
our data indicate that this is not the case. As n increases, the profiles of
the graphs in RPS(n) tend to have finer and finer partitions of the vertex
set. For n = 13, the majority of the profiles partition the vertex set into

73[
3
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singletons, and so the automorphism group of these graphs is immediately
identified to be the trivial group {e}. In fact, for n = 13 almost all of the
nearly one-and-a-half million automorphism groups were found in an aver-
age time of 0.012 seconds. There were only nine graphs whose groups were
not computed so quickly. The few whose profile had just one vertex set —
all 13 vertices had the same vertex profile, hence no permutations could be
ruled out — required 64 hours of computing time per graph.

Below is a listing of the automorphism groups and their frequencies for
the RPS(n) graphs, where n = 9, 11, and 13. The graph data were taken
from [2]. The notation N x H stands for the semidirect product of the
subgroup H acting on the normal subgroup N.

# of RPS(9) graphs | automorphism group
7 {e}
5 Cs
2 Cy
1 (CgXCgXCg)X]Cg
total: 15

# of RPS(11) graphs | automorphism group

1205 {e}
6 Cs
7 Cs
3 Cn
1 Cg X 03
1 011 A 05
total: 1223

# of RPS(13) graphs | automorphism group

1494454 {e}
809 Cs
8 Cs
16 Cg X 03
5 Ci3
4 C1s
1 013 X Cg

total: 1495297
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