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Nearly three decades ago the first integer relations algorithm was developed.
Given a set of numbers {x1, . . . , xm}, an integer relations algorithm seeks integers
{a1, . . . , am} such that a1x1+· · ·+amxm = 0. One of the most popular and efficient
of these is the PSLQ algorithm, listed as one of the top ten algorithms of the 20th

century[2]. This algorithm either finds the integers or obtains lower bounds on the
sizes of coefficients for which such a relation will hold. PSLQ has been implemented
in both Maple and Mathematica. Typically a high degree of numerical precision is
needed for PSLQ to run effectively. If the precison is not sufficiently high, “large”
coefficients are produced suggesting a relation has not been found.

PSLQ has been used to find relationships between various constants. Its first
well-known success was in finding the formula
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discovered by Bailey, Borwein, and Plouffe[4]. This opened up the whole area of
what are now called (after the preceeding authors) BBP series. Examples include
the identity
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This last “identity” has been verified to over 20,000 decimal digits [7], but a tra-
ditional proof is still lacking. Indeed, PSLQ has subsequently been used to find
a variety of other relationships involving infinite series, integrals and special func-
tions. Many interesting examples can be found in the recent article [5] and the
book [3]. Despite such diverse successes, mathematicians have been slow to utilize
this tool.
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This paper piggybacks on the PSLQ algorithm to experimentally find integer
linear relationships among functions. The idea is straightforward. Suppose it
is suspected that a function f(x1, . . . , xm) can be expressed as a rational linear
combination of the functions g1(x1, . . . , xm), . . . , gn(x1, . . . , xm). Evaluate all these
functions at some random point in the intersection of their domains and apply the
PSLQ algorithm. As a check, run PSLQ again at another point to produce a second
set of coefficients. If the second response is a scaled version of the first response,
we conjecture that a relationship has been found.

Some examples of this approach are buried in the literature. In [11], the authors
use this approach to show that if
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The current note aims to demonstrate this PSLQ approach for functions in a variety
of contexts.

It should be noted that in some cases, one can solve this problem using linear
algebra. If the common domain admits at least n points where exact function
evaluations can be made and the n equations are linearly independent, then the
sought-after coefficients can be determined exactly. Even if this is the case, however,
it may be easier to automate the process using the PSLQ approach.

The rest of this paper is a collection of applications.

2. Powers of Sine and Cosine

This is the simplest example because the existence of such formulas is well-
known. The function sin((2n − 1)x) can be written as a linear combination of
sin(x), sin3(x), . . . , sin2n−1(x). Using the PSLQ approach, one finds, for example,
that

sin(19x) = 19 sin(x) − 1140 sin(x)3 + 20064 sin(x)5 − 160512 sin(x)7

+695552 sin(x)9 − 1770496 sin(x)11 + 2723840 sin(x)13

−2490368 sin(x)15 + 1245184 sin(x)17 − 262144 sin(x)19

This is obtained with the following Maple commands:

> with(IntegerRelations):

> Digits := 100;

> x := 0.8234789345738979234583945;

> PSLQ( [sin(19*x), seq(sin(x)^(2*k-1), k=1..10)] );

While using linear algebra directly is not easily possible because the sin function
has too few simple evaluations, a variety of other means are possible to find the
coefficients {a1, . . . , a10} such that

sin(19x) = a1 sin(x) + a2 sin(3x) + · · · + a10 sin(19x)

• Expand using the multiple-angle formula for sin(nx) and cos(nx) recur-
sively.

• Use Fourier series for each of the powers of sin(x) then solve a linear system.
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• Expand the right side with Taylor expansions and match the first ten coef-
ficients. Maple commands:

> ex := sin(19*x) - sum( a[i]*sin(x)^(2*i-1), i=1..10 );

> ex2 := series( ex, x, 20 );

> solve( {seq(coeff(ex2,x^(2*k-1)),k=1..10)}, {seq(a[k],k=1..10)} );

• Differentiate the equation ten times then solve a linear system with x = 0.
Maple commands:

> ex := sin(19*x) - sum(a[k]*sin(x)^(2*k-1), k=1..10 );

> solve( { seq( diff( ex, x$j), j=1..10 ) }, {seq(a[i], i=1..10)} );

The point here is that the PSLQ approach finds these coefficients with little over-
head. It should be noted that if n is replaced with larger values, more digital
precision is needed.

3. Lamé-like Equations and Fermat’s Last Theorem

Before general theories to approach Fermat’s Last Theorem were developed by
Kummer and Sophie Germain, mathematicians considered each exponent one at
a time. The case for exponent n = 7 (see [17, 18]) was first proved by Lamé
(1839). The proof was substantially shortened by Lebesgue (1840), but both used
the equation

(x + y + z)7 − (x7 + y7 + z7)

7(x + y)(x + z)(y + z)
= (x2 + y2 + z2 + xy + xz + yz)2 + xyz(x + y + z).

It seems such identities were not found for higher values of the exponent n. Using
Fermat’s Little Theorem, one may show that the expression

(x + y + z)p − (xp + yp + zp)

p(x + y)(x + z)(y + z)

is a polynomial for all odd p. One has

(x + y + z)3 − (x3 + y3 + z3)

3(x + y)(x + z)(y + z)
= 1

and
(x + y + z)5 − (x5 + y5 + z5)

5(x + y)(x + z)(y + z)
= x2 + y2 + z2 + xy + xz + yz

However, how can one find a compact form for higher cases such as n = 11 or
n = 13? Define the symmetric functions

h1 := x + y + z, h2 := x2 + y2 + z2 + xy + xz + yz, h3 := xyz

Now apply the PSLQ approach (to random x and y) to a linear combination of the
functions
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Similarly, one has for n = 13 the formula

(x + y + z)13 − (x13 + y13 + z13)
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These equations can be easily — albeit tirelingly — proved by algebraic expansions.
Some care is needed in defining the set of functions over which we look for a linear
combination. If this set of functions is linearly dependent (this happens if we added
the term h8

1 in the last equation), many different combinations can be obtained.
While one is tempted to use Maple’s built-in partition capabilities, the resulting set
of functions is linearly dependent. It is not clear whether the equations for n = 11
and n = 13 can be used to gain further insight into Fermat’s equation.

4. Ramanujan’s 6-8-10 Equation and Beyond

Among Ramanujan’s many beautiful equations is the 6-8-10 equation

64[(a + b + c)6 + (b + c + d)6 − (c + d + a)6 − (d + a + b)6 + (a − d)6 − (b − c)6]

×[(a + b + c)10 + (b + c + d)10 − (c + d + a)10 − (d + a + b)10 + (a − d)10 − (b − c)10]

= 45[(a + b + c)8 + (b + c + d)8 − (c + d + a)8 − (d + a + b)8 + (a − d)8 − (b − c)8]2

when ad = bc. Berndt and Bhargava[8] cite this as “one of the most fascinating
identities we have ever seen.” More concisely, let
(4.1)
fm := (1+x+y)m+(−x−y−xy)m−(−y−xy−1)m−(xy+1+x)m+(−1+xy)m−(−x+y)m

Ramanujan’s equation may be compactly stated as

(4.2) 45f2
8 = 64f6f10.

Proofs of equation (4.2) may be found in [9] and [16]. It is also noted (see [8]) that
f2 = 0 and f4 = 0. Without computation, this follows directly from the observation
that x = 0, 1,−1,−2,−1/2 (and by symmetry y = 0, 1,−1,−2,−1/2) are zeros of
f2m.

Attempts to generalize equation (4.2) had been unfruitful until the recent work
of Hirschhorn[14]. He introduced the glaring minus signs in equation (4.2) which
are not seen when m is even. By allowing odd powers, he found

21f2
5 = 25f3f7

One also easily notes that f1 = 0. Looking for other possible equations with the
PSLQ approach, the following new discoveries were made:

8f5f6 = 5f3f8

15f6f7 = 7f3f10

330f2
7 = 539f5f9 − 245f3f11

308f2
10 = 525f8f12 − 300f6f14

1763580f2
11 = 2735810f9f13 − 1172490f7f15 + 144837f5f17 + 71995f2f19

6395400f2
14 = 10445820f12f16 − 5448212f10f18 + 1460151f8f20 + 49980f6f22

It is unclear whether more such identities exist or if there is a proof of these
formulas beyond mindless expansion.
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5. Eisenstein Series

An important tool in the study of partitions and modular forms are Eisenstein
series. In particular, consider the functions

E2k(q) := 1 − 4k

B2k

∞
∑

n=1

n2k−1qn

1 − qn

where Bj is the jth Bernoulli number. It is well-known from the theory of modular
forms of level one [15, p.118] that one may always write E2k as a rational linear
combination of Ea

4Eb
6 where 4a + 6b = 2k and a and b are non-negative integers.

Some oft-cited examples are

E8 = E2
4 , E10 = E6E4.

Using the PSLQ approach, one quickly finds, for example, that

691E12 = 250E2
6 + 441E3

4

77683E22 = 20500E4E
3
6 + 57183E4

4E6

Note that since E2k cannot be evaluated exactly except at q = 0, a direct lin-
ear algebra approach is ineffective. Of course one could approximate the series at
other values of q, perform the linear algebra, and note that the coefficient values
are “close” to integers, but the PSLQ approach is less cumbersome. An analytic
approach is to expand the functions E2k as power series about q = 0 and compare
like powers of q to determine the desired coefficients.

6. Fibonacci Identities

The Fibonacci numbers have proven to be a magnet for both budding and sea-
soned mathematicians alike. These numbers admit many beautiful formulas, some-
times bringing in their cousins, the Lucas numbers. Two fascinating equations
are

F2n = −F 2
n−1 + F 2

n+1,

F3n = −F 3
n−1 + F 3

n + F 3
n+1.

These equations suggest a generalization for Fkn. Since Fn can be calculated ex-
actly, a direct linear algebra approach seems like a natural route to take. Moreover,
the PSLQ approach will encounter problems because the Fibonacci numbers are
integers, so there are many integer linear combinations to be found. How can the
PSLQ approach be used in this scenario?

The trick is to “roughen” the Fibonacci “function” by extending the domain to
non-integer values. This is accomplished via the Binet formula

Fn =
1√
5

(

αn +

(−1

α

)n)

where α = (1 +
√

5)/2. Using this as a definition for the Fibonacci numbers, one
sees that the domain of definition extends to all rationals a/b in lowest form where
b is odd. The identity Fn − Fn−1 − Fn−2 = 0 extends to this new domain since it
only depends on the fact α2 − α − 1 = 0. Since all Fibonacci identities eventually
depend on Binet’s formula, the sought-after identities must also extend to this new
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domain. This means we may use these rationals as test points with the PSLQ
approach to conjecture Fibonacci identities. This approach yields examples such as

6F4n = −F 4
n−2 − 3F 4

n−1 + 3F 4
n+1 + F 4

n+2,

120F6n = −F 6
n−3 − 4F 6

n−2 + 20F 6
n−1,−20F 6

n+1 + 4F 6
n+2 + F 6

n+3

240F7n = F 7
n−3 + 8F 7

n−2 + 40F 7
n−1 − 60F 7

n − 40F 7
n+1 + 8F 7

n+2 + F 7
n+3.

Proceeding with other values of k suggests that Fkn is a rational linear combina-
tion of k kth powers of Fibonacci numbers. After analyzing these formulas, one
conjectures

(

2n
∏

m=1

Fm

)

F(2n+1)j =

n
∑

k=−n

rn−kF 2n+1
j+k

n−|k|−1
∏

p=0

F2n−p

F1+p

where r : ZZ → ZZ is defined by

rn =

{

1, n ≡ 0, 1 mod 4
−1, n ≡ 2, 3 mod 4

Note that the form suggests some kind of “Fibonacci binomial coefficient”.
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