
A Generalization of the One-Seventh Ellipse

A curious mathematical phenomenon is called the One-Seventh Ellipse

[1, 3]. Take the digits from the decimal expansion of 1/7, namely 142857,

and form six points in the plane: (1, 4), (4, 2), (2, 8), (8, 5), (5, 7) and (7, 1).

The surprising fact is that these six points lie on an ellipse. Moreover, if we

take consecutive digits from the decimal expansion two at a time, the six

points (14, 28), (42, 85), (28, 57), (85, 71), (57, 14) and (71, 42) also lie on an

ellipse. Figure 1 displays both ellipses. This note explains and generalizes

these observations.

Figure 1: First and second ellipse.

It is natural to think that this phenomena is related to number theory.

However, the tools we need come from geometry. From the set of points used

in the one-seventh ellipse, notice that 1 + 8 = 4 + 5 = 2 + 7, and also that

14 + 85 = 42 + 57 = 28 + 71. More generally, we find that the sequence of
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six numbers

z1 = a, z2 = b, z3 = c, z4 = S − a, z5 = S − b, z6 = S − c

can be used to generate sets of six points in the plane (assuming z1, . . . , z6

are distinct) that exhibit a beautiful structure. For each n = 1, . . . , 6, define

Pn as the set of six ordered pairs in the plane (zi, zi+n), i = 1, . . . , 6, where

wrap-around is used if necessary. When we refer to a conic section, we do

not limit ourselves to the traditional curves obtained by slicing a cone with a

plane, but rather, the locus of a quadratic polynomial in two variables. This

includes ellipses, hyperbolas, a line, or a pair of parallel lines.

Theorem 1

Suppose that a, b, c, S − a, S − b, S − c are six distinct real numbers.

Then for each n = 1, . . . , 6, we have

1. The six points in Pn lie on a unique conic section. The center of each

conic is located at (S/2, S/2). For n = 3, the conic is the line x+y = S,

while for n = 6, the conic is the line x = y.

2. If n 6= n′ are in {1, 2, 4, 5}, then Pn′ can be obtained by applying a

reflection to Pn. The same reflection connects the conics associated

with each sets of points.

To prove the theorem, we will need some results from geometry. For con-

text, we first state Pascal’s Hexagrammum Mysticum Theorem (see Figure

2).

Proposition 2 (Pascal)
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If a hexagon is inscribed in a conic, then the three points of intersection

of the lines which contain opposite sides of the hexagon are collinear.

Figure 2: Pascal’s Hexagrammum Mysticum Theorem.

Pascal’s Theorem has an interesting converse.

Proposition 3 (Braikenridge-Maclaurin)

If three lines meet three other lines in nine points, and three of these

points lie on a line, then the remaining six points lie on a conic.

Of interest here is that these theorems extend in the case of parallel lines

when one adds a point at infinity. We are really working in the projective

plane RP 2. These results are described in Traves[2]. Using Proposition 3,
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we can now prove Theorem 1.

Proof. (Theorem 1)

To prove part (1), the cases n = 3 and n = 6 are trivial. Consider the set

P1. Form two sets of three lines:

S1 = { line through (a, b) and (b, c),

line through (c, S − a) and (S − a, S − b),

line through (S − b, S − c) and (S − c, a). }

and

S2 = { line through (b, c) and (c, S − a),

line through (S − a, S − b) and (S − b, S − c),

line through (S − c, a) and (a, b). }

By computing their slopes, one sees that each line in S1 is parallel to a line

in S2. This implies that three of the nine points of interesection of S1 and

S2 are the point at infinity, so these three points are collinear RP 2. By the

Braikenridge-Maclaurin Theorem, the remaining six points of intersection,

namely the points in P1, lie on a conic. A similar approach applies to the

sets P2, P4, and P5.

To prove part (2), we use reflections across the following lines: y = x,

x + y = S, x = S/2 and y = S/2. One can show that Pj and Pk —

j, k ∈ {1, 2, 4, 5} and j 6= k — are related by one or two of these reflections.

For example,

P1 = {(a, b), (b, c), (c, S − a), (S − a, S − b), (S − b, S − c), (S − c, a)}
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can be reflected about the line x = S/2 to produce

P4 = {(S − a, b), (S − b, c), (S − c, S − a), (a, S − b), (b, S − a), (c, a)}

We leave it to the reader to check the other connections.

To show that each conic section is also a result of the same reflections,

observe that reflecting a conic section results in a conic section. Since six

points determine at most one conic section, the set of reflections that take

Pj to Pk will also take the conic through Pj to the conic through Pk.

Examples are straightforward to produce. To form an ellipse, take the

original sequence {1, 4, 2, 8, 5, 7}. To form a hyperbola, use the sequence

{5, 4, 3, 7, 8, 9}. To form a pair of parallel lines, take the sequence {1, 2, 4, 8, 7, 5}.

Figures 3, 4, and 5 show these three cases.

While Theorem 1 applies to any choice of a, b, c ∈ R, suppose we try to

connect this back to the original 1/7 observation and limit the parameters

to a, b, c, S − a, S − b, S − c ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. For which x ∈ Q will

this produce a similar phenomenon? Of course this will produce only a finite

number of possibilities. Writing the decimal expansion of x as an infinite
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Figure 3: Ellipses.

Figure 4: Hyperbolas.
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Figure 5: Parallel Lines.

series, we find
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For example, letting a = 1, b = 2, c = 5 and S = 9 produces the number

x = 18/143. One easily determines that the associated conics are ellipses.
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