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Abstract. The Discrete Markus-Yamabe Conjecture (also known as the LaSalle Conjecture)

imposed conditions on the Jacobian eigenvalues of a map in the hope of ensuring global

attractivity of the fixed point. This paper pushes such assumptions to their extreme; the

Jacobian is assumed to be nilpotent at all points. The dynamics of such maps is studied and

diverse behavior is observed, from the quick collapse of points to a globally attractive fixed

point, to maps with self-intersecting invariant curves.
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1 Introduction

A now-settled problem known as the Discrete Markus-Yamabe Conjecture (or

the LaSalle Conjecture) made claims about the dynamics of discrete maps

f : lRn → lRn whose Jacobian matrix Df(x) satisfies certain conditions. Specif-

ically, if f : lRn → lRn is a C1 map for which f(0) = 0 and the eigenvalues λ of

Df(x) satisfy |λ| < 1 for all x, must x = 0 be globally attractive? The condition

on the eigenvalues of the Jacobian evaluated at the origin force the map to be

attractive there, so it is not unreasonable to ask if global asymptotic stability

ensues if the Jacobian eigenvalues maintain the same condition throughout the

whole phase space.

Positive and negative results pertaining to this question can be found in [3].
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The Markus-Yamabe conjecture is true when n = 2 and f is a polynomial. A

two-dimensional rational counter-example is

f(x, y) =

( −ky3

1 + x2 + y2
,

kx3

1 + x2 + y2

)

, k ∈
(

1,
2√
3

)

,

which admits a 4-cycle that includes the point ( 1√
k−1

, 0). A polynomial three-

dimensional counter-example is

f(x, y, z) =
(x

2
+ z(x+ yz)2,

y

2
+ (x+ yz)2,

z

2

)

.

This map has a solution ( 147

32
· 2n,− 63

32
· 22n, 1

2n
). The continuous counterpart to

this conjecture, known as the Markus-Yamabe Conjecture, has a richer history;

see, for example, [2], [4].

As with other Jacobian Conjectures, it is natural to impose extra condi-

tions on the Jacobian matrix in the hope of attaining the desired end, in this

case, global asymptotic stability. A stronger condition than requiring that the

eigenvalues of the Jacobian have modulus less than one is that the Jacobian is

nilpotent ie. the eigenvalues of the Jacobian are all zero. This paper examines

this problem when n = 2 and n = 3. Section 2 considers the classification

of nilpotent maps and disposes of some simple dynamics. Section 3 looks at

the much richer dynamics of a class of three-dimensional nilpotent maps. Sec-

tion 4 focuses on a particularly simple such map to show the complexity of the

dynamics.

2 Classifying Nilpotent Maps

A classification of nilpotent maps has barely begun. The challenge of such a

task is not surprising because of its relation to the Keller Jacobian Conjecture,

a problem which has been reduced to considering unipotent maps. Unipotent

maps are those whose Jacobian eigenvalues all equal one, so subtracting the

identity map gives the nilpotent maps. We limit this study to the cases where

n = 2 or n = 3.

The two-dimensional classification is settled.
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Theorem 2.1 (van den Essen [4])

Let f : lR2 → lR2 be C1. Then Df is nilpotent if f = (u, v) has the form (up to

an affine transformation):

u = b φ(ax+ by) + c

v = −a φ(ax+ by) + d

for some constants a, b, c, d ∈ lR and C1 function φ : lR → lR.

The three-dimensional case is not complete. Two broad classes of functions

have been found, both of which contain all known three-dimensional nilpotent

maps.

Theorem 2.2 (Chamberland and Essen [1])

Let f : lR3 → lR3. Then Df is unipotent if f = (u, v, w) has one of the following

forms (up to an affine transformation):

• For some functions a, b, c, d : lR → lR and φ : lR2 → lR

u = b(z)φ(a(z)x+ b(z)y, z) + c(z)

v = −a(z)φ(a(z)x+ b(z)y, z) + d(z)

w = 0

• For some function φ : lR → lR

u = φ(y − x2)

v = z + 2xφ(y − x2)

w = −(φ(y − x2))2

Since a nilpotent map f has detDf(x) = 0 for all x, any region maps to a set

with zero area. This allows trivial dynamics in some cases where all points are

eventually fixed.

Theorem 2.3 For the case n = 2, all points iterate to a unique fixed point in

at most two iterations. For the first case when n = 3, one always reaches a fixed

point in three iterates.
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Proof: In the case n = 2, the map is

u = b φ(ax+ by) + c

v = −a φ(a(z)x+ by + d

Note that au+ bv = ac+ bd is constant, so one reaches the fixed point (b φ(ac+

bd) + c,−a φ(ac + bd) + d) in at most two iterations. For the first case when

n = 3, z = 0 after one iterate and one is reduced to the n = 2 case, so at most

three iterates are required to reach the fixed point. 2

These maps have simple dynamics ultimately because the Jacobian has rank at

most one. For some time, it was believed that all three-dimensional nilpotent

maps had the form of the first class. However, van den Essen (see [1], [4]) found

an example in the second class with rank 2. This was generalized to the second

class noted above. The next section investigates their dynamics and finds a

much more interesting story.

3 Dynamics with Rank 2 Jacobians

What remains is the second case for n = 3, namely, the iterative process

xk+1 = φ(yk − x2
k
) (1)

yk+1 = zk + 2xkφ(yk − x2
k) (2)

zk+1 = −(φ(yk − x2
k))2 (3)

Since zk+1 = −x2
k+1

, all points map instantly to the two-dimensional manifold

z = −x2. Restricting dynamics to that set reduces system (1)–(3) to the two-

dimensional system

xk+1 = φ(yk − x2
k
) (4)

yk+1 = −x2
k + 2xkφ(yk − x2

k) (5)

This system may be simplified yet further. Letting ak := φ(yk − x2
k
) − xk gives

yk+1 = −(xk − φ(yk − x2
k
))2 + φ(yk − x2

k
)2
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= −a2
k

+ x2
k+1

thus

ak+2 = xk+3 − xk+2

= φ(yk+2 − x2
k+2) − φ(yk+1 − x2

k+1)

= φ(−a2
k+1) − φ(−a2

k).

This produces the “reduced” system

ak+1 = bk (6)

bk+1 = φ(−a2
k) − φ(−b2k) (7)

The transformation is invertible since xk+2 = φ(−a2
k
) and bk = ak+1, so study-

ing (6)–(7) is dynamically equivalent to studying (4)– (5). Note that system

(6)–(7) does not change if a constant is added to φ, so without loss of gen-

erality, let φ(0) = 0.

Theorem 3.1 For the system (6)–(7),

(a) the origin is the only fixed point, and it is super-attracting (ie. nearby

points approach the origin in a quadratic way asymptotically).

(b) there are no 2-cycles

(c) if φ(−a2) = −a for some constant a ∈ lR \ {0}, then (0,−a) is part of a

3-cycle. Zero is always an eigenvalue of the Jacobian at (0,−a).

(d) If φ is a polynomial, then the origin is not globally attractive.

(e) If

|φ(−y2) − φ(−x2)| < ||y| − |x|| (8)

for all x 6= y, then the origin is globally attractive.

(f) The origin’s basin of attraction is symmetric in all quadrants.
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Proof: It is trivial to show that the fixed point is unique. The Jacobian

matrix of the reduced system is nilpotent at the origin, hence the origin is

supper-attracting. For part (b), suppose (x, y) was part of a 2-cycle. Then

x = φ(−y2) − φ(−x2)

y = φ(−(φ(−y2) − φ(−x2))2) − φ(−y2)

This forces y = φ(−x2) − φ(−y2) = −x, hence (x, y) = (0, 0), the fixed point,

so there is no 2-cycle. For part (c), if φ(−a2) = −a, then

(0,−a) → (−a, a) → (a, 0) → (0,−a),

so there is a 3-cycle. A quick calculation shows that zero is always an eigenvalue

of the Jacobian evaluated at (0,−a). If φ is a polynomial, then the equation

φ(−x2) = −x is an even equation. Since φ(0) = 0, there must be another real

solution, so part (c) shows that ther is not global asymptotic stabilty.

For part (e), consider the Liapunov function V (x, y) = max{|x|, |y|}. Then

condition (8) implies

V (u, v) = max{|u|, |v|}

= max{|y|, |φ(−y2) − φ(−x2)|}

≤ max{|y|, ||y| − |x||}

≤ V (x, y)

Another iterate forces a strict inequality, hence all points approach the origin.

The symmetry of origin’s basin of attraction is clear since two iterates of

(x, y), (x,−y), (−x, y) and (−x,−y) all map to the same point. 2

Though the 3-cycle mentioned in part (c) cannot be repelling (because of

the zero eigenvalue), it may be a saddle or an attractor. When φ(x) = cx for

some non-zero constant c, the 3-cycle is always a saddle. If φ(x) = cx2, the

3-cycle may be either a saddle or an attractor.
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4 The Simplest Map

Perhaps the simplest looking case where there is no global asymptotic stability

is the case φ(x) = −x. We already know there is a 3-cycle, but what else can

be said about this map? It ends up that it exhibits some pretty wild behavior.

The reduced map is explicitly given as

u = y (9)

v = x2 − y2 (10)

The Liapunov function used in the last section can be used here to show

that the open square (−1, 1)× (−1, 1) is in the origin’s basin of attraction.

This basin of attraction is also unbounded. The point (1, 1) is on the basin

boundary, so if it has a divergent predecessor set, by continuity the basin

itself must be unbounded. Each point (u, v) has two predecessors, namely

(
√
v + u2, u) and (−

√
v + u2, u). Letting y0 = 1 and y−1 = 1 and using the

relationship yk+2 = y2
k
− y2

k+1, positive predecessors evaluate to y−2 =
√

2,

y−3 =
√

3, y−4 ≥ 2. By induction, one may prove that y−k ≥
√
k, hence the

basin is unbounded.

A portion of the basin is shown in the figure 1. It is similar to the basin of

attraction of the origin for the map

u = x2 + xy − y2

v =
1

2
xy

studied by Nien[7].

The stable manifold of the 3-cycle point (0, 1) can be studied more closely.

It is an even function y = ψ(x) satisfying the functional equation

ψ(ψ(x)2 − (x2 − ψ(x)2)2) = (x2 − ψ(x)2)2 − (ψ(x)2 − (x2 − ψ(x)2)2)2

with ψ(0) = 1 and ψ′(0) = 0. The first few terms in a series expansion give

ψ(x) = 1 +
1

2
x2 +

1

8
x4 − 5

16
x6 +

51

128
x8 +

137

256
x10 +O(x12)
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Figure 1: The basin of attaction in [0, 2]× [0, 2].

Since the eigenvalue corresponding to the stable manifold is zero, further calcu-

lation is required to determine the dynamics near (0, 1). Three iterates of the

map take (x, ψ(x)), with |x| sufficiently small, to the right-hand plane.
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It is easy to show that there are no other 3-cycles. To see this, note that a

point which is part of 3-cycle must satisfy

x = y2 − (x2 − y2)2

y = (x2 − y2)2 − (y2 − (x2 − y2)2)2

One may manipulate these to show that x, y ∈ {0, 1}. Since there are also no

other fixed points to the map, this implies all points on the stable manifold

through (0, 1) approach the 3-cycle. By considering the predecessor sets of this

basin boundary curve, one obtains an infinite collection of curves, all of which

form the boundary to the immediate basin of attraction of the origin.

The unstable manifold coming out of (0, 1) goes through an amazing path

and crosses itself; see figure 2. This implies that this invariant curve crosses

itself infinitely often (there are no other fixed points to stop it). Moreover, since

this invariant curve crosses the basin of attraction, there must be portions of

the curve arbitrarily close to (0, 1) which are also in the basin. This means the

basin of attraction has infinitely many components.

Self-intersecting invariant manifolds have not been commonly noted in the

literature. The earliest example can be found in [5, 201ff.], with the example

u = y − 1

1000
y3 + F (x)

v = −x+ F

(

y − 1

1000
y3 + F (x)

)

where

F (x) =
x

2
+

x3

1 + x2
.

Such self-intersections are typical among non-invertible maps. More general

properties may be found in [6].

5 Conclusion

Since counter-examples for the Discrete Markus-Yamabe have been found, one

must impose stronger conditions on the Jacobian matrix in hopes of obtain-

ing global stability. The paper studied the strongest possible imposition, the
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Figure 2: Unstable Manifold eminating from (0, 1) with self-intersection.

nilpotency of the Jacobian. While the two-dimensional case and some three-

dimensional cases yield a very strong global attractivity (attained in two or

three iterations), another class of three-dimensional maps yields dynamics with

cycles, divergent orbits, and self-intersecting invariant curves. Simply put, the

strongest Jacobian conditions alone cannot yield global asymptotic stability.
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