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1. INTRODUCTION

In the last few decades mathematicians have discovered very simple func-
tions which induce spectacularly intricate dynamics. For example, the lo-
gistic map produces a striking bifurcation diagram and fractals, the Hénon
and Lorentz maps display complex strange attractors, and the Game of Life
for cellular automata has the power of a universal Turing machine. These
iteration schemes, and others not explicitely mentioned here, have grabbed
public attention because of the beautiful patterns associated with them. The
book [1] revels in displaying their rich dynamics.

In [2], Schultz and Shiflett propose a new map on sets with dynamics
that are both complex and ordered. Given three real numbers a, b, ¢ they
define x4 as the solution of the equation

b
(1.1) atbretas
4
By iterating the scheme suggested by (1.1) one obtains the recursive equality

a+bt+ct+as+---+a,
n

= median(a, b, c).

(1.2)

= median(a,b,c, x4, ..., Tn_1).

Schultz and Shifflet [2] discuss the complicated dynamics associated to
(1.2) and conjecture that the sequence {xy,}2°, becomes constant after
finitely many iterations.

Building on their work, we will introduce a new function — the mean-
median map — which will also have a rich structure and whose graph (Figure
3) is a new icon of rich dynamics stemming from simple rules. While we
are not able to solve the conjecture of Schultz and Shiflett, we are adding
to their analysis some results, strategies and conjectures that may inspire
other mathematicians to further investigate the problem and hopefully find
a definite answer to all questions raised in [2] and by us.

This paper is organized in the manner we now describe. Section 2 contains
results and conjectures about the problem in the general case when the
number of starting values is not necessarily 3. In Section 3 we analyze the
case studied in [2] and add some new results to the ones found by Schultz and
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Shiflett. For comparison, we finish with a figure to illustrate the complexities
when 4 initial points are taken.

2. REsSuULTS AND CONJECTURES

Starting with a non-empty finite set S,, = {z1,...,2,} C R, generate the
unique number x,,41 which satisfies the mean-median equation

1+ -+ Tn+ Tt

(2.1) o = median(Sy).
As usual, we define the median of the set S, = {z1,...,2,}, where 21 <
. e S Tp, as
T , n odd,
(2.2) median(Sy,) = { mn/zig:/lz)ﬁ
—E5t =, neven.

The set S, is augmented to Sp,4+1 := S, U {z,+1}. By applying the mean-
median equation repeatedly to a set S, one generates an infinite sequence
{@1 132,41 Our goal is to investigate the behavior of such sequences. The
first important result was also observed in [2] for the case n = 3.

Theorem 2.1. The sequence of medians is monotone.
Proof. Starting with S, = {x1,...,z,} C R, we have
x1+ -+ xp+ 2pe1 = (n+ 1) median(Sy,).
The next iteration produces
1+ + Ty + Tpg1 + Tpgo = (04 2) median(Sp41).
Subtracting yields
(2.3)  mpyo = (n+ 1)[median(Sy+1) — median(Sy,)] + median(Sy+1).

If median(S,+1) > median(S,), then x,.o > median(S,+1), which in
turn forces median(Sy+2) > median(Sy+1) by the definition of the median.
This process may be continued indefinitely producing a sequence of medi-
ans which is monotonically non-decreasing. Similarly, if median(S,+1) <

median(Sy,), the sequence of medians is monotonically non-increasing. [

It is easy to check that when the starting set has one or two elements the
sequence of medians settles immediately. However, when the starting set
has three points a < b < ¢, the sequence reveals surprisingly complicated
dynamics. As mentioned in the introduction, the main conjecture of [2] is
that the sequence of medians is not only monotonic, but eventually fixed.
We reformulate the conjecture for a set S,, with n > 3 and for the sequence

{xk}zozn—‘rl'

Strong Terminating Conjecture: For every finite non-empty set S C R,
there exists an integer k such that the associated infinite sequence satifies
xj = xy for all j > k. In other words, the sequence of new terms settles
permanently to the median after a finite number of mean-median iterations.
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With the help of Maple, we studied the behavior of {zx}72, ., for many
cases. These numerical investigations suggest that the number of steps
needed until the limiting median is attained is an unbounded function. This
leads to the

Weak Terminating Conjecture: For every finite non-empty set S C R,
the limit of the medians is finite.

To reduce the iteration scheme to a canonical collection of starting sets,
we start with the following linearity result. Let L denote the map which
takes a starting set S, = {x1, x2,..., x,} and produces the set L(S,) =
{v1, y2,---, Yn}, yi=ax;+b, i=1, 2, ..., nand a # 0.

Theorem 2.2. The sequence {y,}>2 is convergent if and only if the se-
quence {x, }5° 1 is convergent.

Proof. We shall prove that if the sequence {z,}° converges to = then
the sequence {y,}7° ; converges to axs + b. The result is a consequence of
(2.3) and the equality

ar; +b T
Z — = Z — 4 b
i=1 i=1
O
Let M : R" — R be the function that assigns to every n-tuple (z1,x2, ..., x,)

in R" the limit zo, of the sequence {x;}72, ., defined by the mean-median
equation (2.1), provided that such a limit exists. Theorem 2.2 and numerical
evidence suggest the following conjecture.

Continuity Conjecture
The function M is continuous.

We would like to mention two results that may make it easier to provide
an answer to the stated conjectures. The first result can be easily derived
from (2.3).

Theorem 2.3. The sequence of the medians converges in finitely many steps
if and only if the sequence {wy}32, | becomes stationary.

Theorem 2.4. Assume that x; = x; for some j > i > n. Then the sequence
of the medians converges.

Proof. We can assume, without loss of generality, that the sequence of
the medians is monotone non-decreasing. From (2.3) we derive that z; >
median(S;—1) and x; > median(S;_1). If the sequence of the medians does
not reach the value z; = x; then it is convergent. In the case when the
sequence of the medians reaches the value z; = x;, two successive medians
will be equal. This result implies that {z3}32, | becomes stationary. [
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We point out that every numerical investigation containes the presence of
two equal values z; = x; before the sequence becomes stationary. We have
never found an example of convergence without this feature. We cannot
explain the occurrence of the two equal values, which may be separated by
a large number of iterations.

3. THREE INITIAL POINTS

Lemma 2.2 implies that the dynamics of the set S = {a,b,c}, with a <
b < ¢, are equivalent to those of {0,z,1} where z = (b —a)/(c —a) € [0,1].
Shultz and Schiflett consider the reduction of all cases to {0, z, z+1} instead.
Let M({0,z,1}) represent the median after k£ elements are in the set and
m(z) = Mx({0,z,1}). Examples are m(1/2) =1/2, m(2/3) =1, m(1) = 1.
The following result with L(z) = 1 — z from Theorem 2.2 implies that one
need only work on the interval [1/2,1].

Theorem 3.1. For all0 <a <1, m(l—a)=1-m(a).
The following is a less obvious use of Theorem 2.2.

Theorem 3.2. If1/2 < a <1, then

(3.1) m(a) = (3a —1)m <3aa_ 1)

Proof. 1t 2/3 < a <1, then
m(a) = My ({0,a,1})
= My({0,a,1,3a — 1})
= My({0,a,3a —1})
3a — 1)My({0,a/(3a — 1),1})

(
= Ba—1m <3aa— 1>

The equation is invariant on replacing a with a/(3a — 1) which settles the
case when 1/2 < a < 2/3. O

This result implies that one need only work on the interval [1/2,2/3].
Theorem 3.2 cannot be used in a recursive manner because replacing a with
a/(3a —1) leaves Equation 3.1 unchanged. Given some a € [1/2,1], we refer
to a/(3a — 1) as its partner.

The behavior of m near a = 1/2 (and hence a = 1) is completely deter-
mined. The following is equivalent to the strongest result in [2].

Theorem 3.3. For all e € [0,4/333],

1 1 333
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Proof. We wish to study My({0,1/2 + €,1}). For sufficiently small €, these
new terms stay less than one and take the form 1/2 + re for some rational
number 7. In chronological order, the corresponding r terms are:
3,6,8,13.5,16.5, 15, 17, 38.25, 43.75, 23.25, 24.75, 26.25, 27.75, 20.75, 21.25,
52.625, 56.375, 26.5, 44.25, 46.25, 42, 43.5, 41.625, 42.875, 29.625, 29.875, 30.125,
30.375, 47.125, 48.375, 60.5625, 62.4375, 34.25, 34.5, 34.75, 35, 35.25, 35.5,
113.6875, 117.5625, 39.875, 40.125, 40.375, 40.625, 40.875, 41.125, 41.375, 41.625,
41.875,42.125, 111.125, 113.875, 84.5625, 86.1875, 47.25, 47.5, 47.75, 48, 48.25,
48.5, 48.75, 49, 49.25, 49.5, 49.75, 50, 50.25, 50.5, 41.625

The last term repeats indefinitely. The largest term, 1/2 + 117.5625¢, will
be less than 1 if € < 0.004253. Since the median settles to 1/2 + 41.625¢ =
1/2 + 333¢/8, we have the desired equation. Note that r = 41.625 was at-
tained two times before this point. The upper bound of € < 0.004253 can
be increased and still yield the same dynamics. As long as the median stays
less than 1, this will occur. Since the median is increasing and the final
median is 1/2 + 41.625¢, we can allow € < 4/333 ~ 0.012012. For all such e,
the median is permanently attained after 70 iterations. O

Theorem 2.1 implies that the sequence of medians is non-decreasing for
each a € [1/2,1], hence the preceeding proof implies

Corollary 3.1. For a € [1/2 +4/333,1], m(a) > 1.

We can see how the conjectured function m is built by looking at the
median of {0,z,1} after n steps; see Figure 1. By Theorem 2.1, the iter-
ates form a sequence of non-decreasing piecewise linear functions. Several
results follow from this. If the Weak Terminating Conjecture holds and m
is continuous, Dini’s Theorem claims that the convergence is uniform.

Regarding the corners of m, we have the

Theorem 3.4. If x = xq is a corner of m, then xq is rational.

Proof. Because the mean and median of a set of rationals is always ratio-
nal, if the corners of My({0,z,1}) are at rational points, the corners of
Mj+1({0,z,1}) must also be at rational points. Since M3({0,z,1}) = z, in-
duction implies the function My ({0, z,1}) must also have all of its corners at
rational numbers for each k > 4. If m has a corner at xg, then M}, converges
after finitely many iterations, and hence xy must be a rational. O

With Corollary 3.1 in mind, a simple, better lower bound for m does not
exist since m = 1 at the following values:

2 78 9 9 18 27 55 71 73 141 143 145 157 327 329

3'1215°16' 17" 35" 52 106" 138" 142" 274" 278’ 282" 306" 638 642
331 333 335 337 339 341

646’ 650° 654° 658’ 662 666
Note that all of these fractions have the form

i 341a
a | 666
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FIGURE 1. The medians My ({0,z,1}), k =4,...,10.
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for some integer a. Corollary 3.1 implies that checking the corners of Mz
generates all the finitely-many values of x where m(z) = 1.

The reason the dynamics are understood on the interval [1/2,1/244/333]
is that the ordering of the points does not change. To the right of this
interval, however, the ordering changes. Numerically, the first bifurca-
tion occurs at x =~ 0.51208253563071686875132 and the median is per-
manently attained after 72 iterations. The following bifurcation occurs at
x ~ 0.5120825919642479717794 and the median is permanently attained
after 74 iterations. After this the median is permanently attained after
76 iterations. In each of these parameter ranges, however, we still have
m(1/2+¢€) =1/2 4 41.625¢.

One would hope that Theorem 3.1 could be exploited at a = 2/3. For
example, if m is differentiable at 2/3, then that derivative equals zero. How-
ever, numerical evidence suggests that m is affine on each side of this point:
for sufficiently small € > 0,

2 ) o, 2 2 L2
m3 €)= 26,m3 €)= 26

Combining this observation with Theorem 3.3 and particularly with Figure
1 suggests the

Affine Segments Conjecture: The function m is affine off of a set of
measure zero.

There is reason to hope that the map m is affine almost everywhere.
Specifically, numerical evidence suggests that m is differentiable almost ev-
erywhere and on any interval where it is differentiable, the derivative is
constant. An easily-proven related observation is that if m is twice contin-
uously differentiable, then equation (3.1) implies

a1 =" (14

so if m is affine on an interval, it is also affine on its partner interval.

A coarse calculation gives a sketch of the function m over a short interval,
see Figure 2. If nothing else, the figure shows that the map m is very
complicated. As an indication of the sensitivity of m, note that m(0.6) = 2.4
with 32 steps, while m(0.60001) = 2.6353166429240703582763671875 with
12488 steps. The largest value found so far is m(0.843) = 4.64546875, in
526 steps.

The case with four initial points has some similarities as with three initial
points. Theorem 2.2 allows us to consider only the initial points 0 < a <
b < 1. The function m = m(a,b) on the unit square is displayed in figure 3.
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FIGURE 2. The function m on [1/2,2/3].
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FiGURE 3. The function m with four initial points.
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