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Abstract. This paper considers the mean-value functional equation
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where Br(z) is a ball of radius R centred at z € R", and p represents Lebesgue measure. By using the
spectral synthesis, we find that the space of continuous functions satisfying this equation (in the case n = 1, 2)
is characterized in terms of solutions of the Helmholtz equation.
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1 Introduction

The equation
1

#(Br(2)) JBp(=)
where p represents Lebesgue measure, has received considerable attention (see the excellent survey
on mean-value theorems by Netuka and Vesely[5]). Throughout the paper, R is a fixed positive con-
stant, so the results obtained may be considered as “one-radius” theorems (one may see Zalcman[10]
for a discussion on “two-radius” theorems). In the case n = 1, Walter[7] recently showed how to
generate a large class of solutions to equation (1). Besides the linear functions, which are sometimes
referred to as the trivial solutions, Walter remarked that exponential functions

f(z) = e

satisfy Equation (1) if and only if sinh(AR) = AR. He also found that if g(z) is a C* function
defined on [—R, R] such that

f(@) F(t)dt (1)

g9(-R) =¢\9(0) =gV (R) =0, j=0,1,2,..., (2)

then g has a unique extension to the real line such that f = g’ satisfies Equation (1). As may be
seen in Netuka and Vesely[5], many authors have found examples of non-harmonic functions which
satisfy Equation (1) for all n.
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In this paper, I wish to show how to generate all the continuous solutions for Equation (1), at
least in the cases n = 1 and n = 2. We shall use the method of spectral synthesis. In Section 2,
the spectral synthesis method is explained and the results which will be used shall be introduced.
Section 3 considers the case n = 1, while section 4 details the two-dimensional case.

2 Spectral Synthesis

Let C'(R"™) denote the space of continuous functions on R™ with the topology of uniform convergence
of functions on compact sets, and £(R™) the space of infinitely differentiable functions on R™ with
the topology of uniform convergence of functions and their derivatives on compact sets. A function
f: R® — C is said to be a polynomial-ezponential function if

f(z) = p(a)e™*

for all z € R™, where p(-) is a polynomial, and z € C™ is constant. In his study of mean-periodic
functions of one variable, Schwartz[6] discovered the following result:

Theorem 2.1 Every closed translation-invariant subspace of C(R) or E(R) is spanned by the
polynomial-ezponential functions it contains.

For some time, it was not clear whether this theory extended to higher dimensions. Gurevich[4]
showed that translations were not sufficient to generate a spectral synthesis for dimensions greater
than one. Brown, Schreiber and Taylor[2] showed that the extra bit needed to generalize the
spectral synthesis to other Euclidean spaces was to include rotations, thus for the two-dimensional
case, we have

Theorem 2.2 ([2]) Every closed translation-invariant rotation-invariant subspace of C(R?) or
E(R?) is spanned by the polynomial-ezponential functions it contains.

The following results will work in the space £(R?), but Brown et al. noted that these results
may extend to C'(R?), due to the following density result (see [2]):

Theorem 2.3 Let V be a closed translation-invariant subspace of C(R?), and let V1 = V N E(R?).
Then V; is dense in V in the topology of C(R?).

The following theorems are proven in Chamberland and Gladwell[3].

Theorem 2.4 Let V be a closed translation-invariant rotation-invariant subspace of £(R?). Sup-
pose there erists a function g(z) = € in V with € = (£1,&2) # (0,0), and let a = €2 + €2. Then
every function u € £(R?) satisfying the Helmholtz equation

Au+oau=0 (3)
1sin V.

We would like to complement Theorem 2.4 by showing when a space V is actually just the space
of Helmholtz functions.



Theorem 2.5 Let V be a closed translation-invariant rotation-invariant subspace of £(R?). Sup-
pose there exists a function g(z) = €% in V with £ = (€1,&2) # (0,0), and let a = €2 +£2. Suppose
that among all such functions g, the value of o is unique, and that the only polynomial-ezponential
functions in V with a linear polynomial part and ezponential part e*® are multiples of

De¥®
where © = (21,y1) and
0 0
D=y — e,
" Oz, mlayl

Lastly, in the case o = 0, we also impose that V contains no non-harmonic polynomials. Then V
is precisely the space of solutions to

Au -+ oau=0.

Finally, note that the preceding theorem may be naturally extended to consider spaces where
a is not unique; if the conditions of Theorem 2.5 hold for each value of «, then the space V' is the
closed span of solutions of the Helmholtz equation (3) over all values of a.

3 The One-Dimensional Case

For the case n = 1, Equation (1) becomes

1@ = g [ 1 (4)

Clearly the space of continuous functions satisfying Equation (4), which we denote by V, is
closed and translation-invariant. We therefore may use Theorem 2.1 and claim that the polynomial-
exponential functions which satisfy Equation (4) generate the space of functions. The pure expo-
nential function f(z) = ¢® satisfies Equation (4) if and only if sinh(AR) = AR. Walter remarked
that by a theorem of Polya there is a countably infinite number of such A. One easily sees that
if 27e*® isin V (with n > 1), then 2" 1e*® is also in V. If we suppose that ze®
Equation (4) with A # 0, then

is a solution to

1 z+R
ze’” = ﬁ/%_R te dt
- L [(:B + R)=+E) _ (z — R)eM=—R) 1 (eA(m+R) _ e,\(m_R))]
2RX s ,
thus 1
e (e (e e L (o )

Using the fact that sinh(AR) = AR, we obtain

2RAz = 2Rz + R (eR)‘ + e_R)‘) — 2R,



thus
0= (eR)‘/Z — e_R)‘/Q)2 .

Having ef?* /2 = e#* /2 forces A = 0, hence if p(z)e** € V for some polynomial p and X # 0, then
p is a constant.
Similarly, we show that the polynomial 22 cannot be in V:

1 z+R
2 2
= — t°dt
* 2R /z-—R

_ 1 2 3
which holds only if R = 0. This contradiction implies the only polynomials in V' must be linear; it
is clear that all the linear polynomials are in V.

In conclusion, we use Theorem 2.1 to obtain

Theorem 3.1 The space of continous functions satisfying Equation (4) is the closed linear span
of the linear functions and the ezponential functions e**, where sinh(AR) = AR.

It is worth noting that there is no result connecting the functions mentioned by Walter through
Equation (2) with the span of exponential functions obtained. Walter showed that if n(r) denotes
the number of |A| < r such that sinh(AR) = AR, then

Rr

n(r) = " 1 O(log(r)),
which implies
lim ™) _ B (5)
=00 T m

Now we shall see how this relates to nonharmonic Fourier series. Let A = {),,} be a sequence of
real or complex numbers. The completeness radius of A is defined to be the number

S(A) =sup{A: {e****} is complete in C[—A, A]}.

Theorem 13 in Young[8, p.138] claims that if A is a sequence of positive reals satisfying condition
(5), then S(A) > R. Unfortunately, the set {),} under consideration not only fail to be real,
but have arbitrarily large imaginary parts. However, it is reasonable to speculate from Walter’s
condition (2) that for our system, we have S(A) = R. This suggests that Walter’s result indirectly
yields a new approach to determining the span of some families of exponentials.

4 The Two-Dimensional Case

We consider the equation
1
z) = — t)dt 6
1@ = g [, SO (©)

where z,¢ € R%. As an aid to the integration we shall do, we introduce the Pizzetti formula[9]:



/ER() lt)dt = 2x Ri%(}zykﬂ’ (7)

where z € R?. This is a generalization of the mean-value formula for harmonic functions. Again,
let V' denote the space of continuous functions satisfying Equation (6). The space V is clearly
translation-invariant, rotation-invariant and closed in the usual topology. Now we seek for polynomial-
exponential functions satisfying Equation (6).

First we note that any polynomials satisfying Equation (6) must be harmonic. Assume f = f(z)
is a nonlinear polnomial. Write f as

= z“: hi(z)
k=0

where hy, is a homogeneous polynomial of degree k. Using the Pizzetti formula, and comparing the
order of the terms, we see that Ah,, = 0. Using this inductively, we find that Ah; = 0 for all k&,
hence f is harmonic.

Let us now consider non-trivial pure exponentials. Letting f(z) = e**®, with A = (A1, A2) € C?,
we have

Af+wf =0,

where w = /A2 + A2. If w = 0, then f is harmonic, so we assume that w # 0. Using Equation (7),
we find that

o0 :B)

/BR(w)f(t dt = 27rRZk'k+1 <§>2k+1
M(R)2k+l

2
———=f(z) see[l, formula 9.1.10]

where J; is a Bessel function of the first kind of order one. This implies that f satisfies Equation
(6) if and only if
wR = 2J;(wR).

Note that since |J](z)| < 1/2 for all non-zero real z, the imaginary part of w is non-zero. As in the
previous section, we now consider functions of the form

f =B 2,
where 3 € C%. One may easily show that
AFf = ()N (—w? f + 2838 - e,
From Abrabowitz and Stegun[l, formula 9.1.10] we have

o) 24
2/2) Zk' k‘|/‘2)'



We use this to obtain

/BR(z)f(t)dt — or Rzk'k+1) <§>2k+1

_ 2’TRZ (—w)F 1 (—w? f + 2kif - Ae?®) <R>2k+1

kl(k+1)! 2

_ Jl(UJR) o (_w2)k—1 R 2k+1
= 27rRTf( z) + 47 Rif3 - Xe Z mk <§>
= 2%R@f(m) + 27 R%iB - X', (wR) /w?

= mR%f(z)+ 27R%B - Ae**Jy(wR)/w

since we have wR = 2J;(wR). Since w # 0 and the zeros of J; are real, we must have g- A = 0.
We may now apply the remark to Theorem 2.5 to obtain

Theorem 4.1 The space of continuous functions which satisfy Equation (6) is the closed linear
span of the functions satisfying

Af+wif=0
where wR = 2J,(wR).
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