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Abstract. By identifying the terms in the LU decomposition of an
appropriate matrix, a new representation for Legendre polynomials is
found.

In [1], Chamberland uses the LU decomposition of matrices, a tool typi-
cally used in numerical linear algebra, to discover and prove combinatorial
identities. Specifically, take a highly structured square matrix, compute the
LU decomposition, identify the terms in both L and U , and thus produce a
conjectured sum formula. To see the patterns in L and U , one usually needs
to consider an n× n matrix where n is sufficiently large. Sequence recogni-
tion is supported by using the On-Line Encyclopedia of Integer Sequences
(http://oeis.org/) or the Maple package gfun.

The goal of this paper is to use the LU decomposition process to discover
and prove a new representation for the Legendre polynomials. Identities
and properties of these polynomials are ubiquitous in the literature[3]. A
standard way to define the Legendre polynomials is with its Rodrigue’s
representation:

(1) Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]

where n is a natural number. Another approach is to generate these poly-
nomials from the recurrence relationship

(2) (n+ 2)Pn+2(x) = (2n+ 3)xPn+1(x)− (n+ 1)Pn(x)

coupled with P0(x) = 1 and P1(x) = x. Both of these characterizations play
a role in the ensuing analysis.

Inspired by the Rodrigue representation (1), construct an n × n matrix
M whose (i, j) entry is

Mij =
di−1

dxi−1
[(x2 − 1)j−1]
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The LU factorization, performed with Maple, produces the following when
n = 4:









1 x2 − 1 (x2 − 1)2 (x2 − 1)3

0 2x 4x(x2 − 1) 6x(x2 − 1)2

0 2 12x2 − 4 6(x2 − 1)(5x2 − 1)
0 0 24x 120x3 − 72x









=









1 0 0 0
0 1 0 0
0 1/x 1 0
0 0 3/x 1

















1 x2 − 1 (x2 − 1)2 (x2 − 1)3

0 2x 4x(x2 − 1) 6x(x2 − 1)2

0 0 8x2 24x2(x2 − 1)
0 0 0 384x4









By choosing larger values of n and looking for a pattern, one eventually
conjectures forms for the (i, j) entry of both L and U :

Lij =

{

(2i−2j)!( i−1

2i−2j)
2i−j(i−j)!

xj−i, i ≥ j,

0, otherwise,

and

Uij =

{

2i−1(j−1)!
(j−1)! (x2 − 1)j−ixi−1, i ≤ j,

0, otherwise.

Since

Mi,j =

min(i,j)
∑

k=1

Li,kUk,j ,

this leaves us with the conjecture (after some simplification)

(3)
di

dxi
[(x2−1)j ] =

min(i,j)
∑

k=0

j!(2i− 2k)!

(i− k)!(j − k)!

(

i

2i− 2k

)

(2x)2k−i(x2−1)j − k

Since our goal is to find a representation for Legendre polynomials, we are
not interested in proving this formula in its full generality, but only in the
special case i = j. Coupling this observation with Rodrigue’s representation
(1) suggests that we consider the polynomial expressions

fj :=
1

j!2j

j
∑

k=0

j!(2j − 2k)!

((j − k)!)2

(

j

2j − 2k

)

(2x)2k−j(x2 − 1)j−k

It is possible, albeit cumbersome, to prove that fj is the jth Legendre poly-
nomial by using known identities. However, this approach can be avoided by
using Zeilberger’s algorithm (see [2]) for combinatorial sums. Given a sum of
hypergeometric type, this technique produces a recurrence relation satisfied
by the sum. Using Maple’s built-in command for Zeilberger’s algorithm, one
finds that

(j + 2)fj+2(x) = (2j + 3)xPj+1(x)− (j + 1)Pj(x)
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for all natural numbers j, the same recurrence as equation (2). It is easy to
see that f0 = 1 and f1 = x, implying that the expression fj is indeed the

jth Legendre polynomial, that is,

(4) Pj(x) =

j
∑

k=0

(2j − 2k)!

2j((j − k)!)2

(

j

2j − 2k

)

(2x)2k−j(x2 − 1)j−k

This new expression can be compared to two similar well-known expres-
sions [3]:

(5) Pn(x) =
1

2n

n
∑

k=0

(

n

k

)2

(x− 1)n−k(x+ 1)k

and

(6) Pn(x) =
1

2n

n
∑

k=0

(−1)k
(

n

k

)(

2n− 2k

k

)

xn−2k

The first formula is readily expanded around x = ±1, while the second
formula expands around x = 0. The new formula (4) can be expanded
around all three values.
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