A NEW REPRESENTATION FOR LEGENDRE POLYNOMIALS

MARC CHAMBERLAND AND KAIQIAN ZHANG

Abstract

By identifying the terms in the LU decomposition of an appropriate matrix, a new representation for Legendre polynomials is found.

In [1], Chamberland uses the LU decomposition of matrices, a tool typically used in numerical linear algebra, to discover and prove combinatorial identities. Specifically, take a highly structured square matrix, compute the LU decomposition, identify the terms in both L and U, and thus produce a conjectured sum formula. To see the patterns in L and U, one usually needs to consider an $n \times n$ matrix where n is sufficiently large. Sequence recognition is supported by using the On-Line Encyclopedia of Integer Sequences (http://oeis.org/) or the Maple package gfun.

The goal of this paper is to use the LU decomposition process to discover and prove a new representation for the Legendre polynomials. Identities and properties of these polynomials are ubiquitous in the literature[3]. A standard way to define the Legendre polynomials is with its Rodrigue's representation:

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right] \tag{1}
\end{equation*}
$$

where n is a natural number. Another approach is to generate these polynomials from the recurrence relationship

$$
\begin{equation*}
(n+2) P_{n+2}(x)=(2 n+3) x P_{n+1}(x)-(n+1) P_{n}(x) \tag{2}
\end{equation*}
$$

coupled with $P_{0}(x)=1$ and $P_{1}(x)=x$. Both of these characterizations play a role in the ensuing analysis.

Inspired by the Rodrigue representation (1), construct an $n \times n$ matrix M whose (i, j) entry is

$$
M_{i j}=\frac{d^{i-1}}{d x^{i-1}}\left[\left(x^{2}-1\right)^{j-1}\right]
$$

[^0]The LU factorization, performed with Maple, produces the following when $n=4$:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & x^{2}-1 & \left(x^{2}-1\right)^{2} & \left(x^{2}-1\right)^{3} \\
0 & 2 x & 4 x\left(x^{2}-1\right) & 6 x\left(x^{2}-1\right)^{2} \\
0 & 2 & 12 x^{2}-4 & 6\left(x^{2}-1\right)\left(5 x^{2}-1\right) \\
0 & 0 & 24 x & 120 x^{3}-72 x
\end{array}\right]} \\
& \quad=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 / x & 1 & 0 \\
0 & 0 & 3 / x & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & x^{2}-1 & \left(x^{2}-1\right)^{2} & \left(x^{2}-1\right)^{3} \\
0 & 2 x & 4 x\left(x^{2}-1\right) & 6 x\left(x^{2}-1\right)^{2} \\
0 & 0 & 8 x^{2} & 24 x^{2}\left(x^{2}-1\right) \\
0 & 0 & 0 & 384 x^{4}
\end{array}\right]
\end{aligned}
$$

By choosing larger values of n and looking for a pattern, one eventually conjectures forms for the (i, j) entry of both L and U :

$$
L_{i j}=\left\{\begin{array}{cl}
\frac{(2 i-2 j)!\left(i_{i-1}^{i-1}\right)}{2^{i-j}(i-j)!} x^{j-i}, & i \geq j \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
U_{i j}=\left\{\begin{array}{cl}
\frac{2^{i-1}(j-1)!}{(j-1)!}\left(x^{2}-1\right)^{j-i} x^{i-1}, & i \leq j, \\
0, & \text { otherwise. }
\end{array}\right.
$$

Since

$$
M_{i, j}=\sum_{k=1}^{\min (i, j)} L_{i, k} U_{k, j},
$$

this leaves us with the conjecture (after some simplification)
(3) $\frac{d^{i}}{d x^{i}}\left[\left(x^{2}-1\right)^{j}\right]=\sum_{k=0}^{\min (i, j)} \frac{j!(2 i-2 k)!}{(i-k)!(j-k)!}\binom{i}{2 i-2 k}(2 x)^{2 k-i}\left(x^{2}-1\right) j-k$

Since our goal is to find a representation for Legendre polynomials, we are not interested in proving this formula in its full generality, but only in the special case $i=j$. Coupling this observation with Rodrigue's representation (1) suggests that we consider the polynomial expressions

$$
f_{j}:=\frac{1}{j!2^{j}} \sum_{k=0}^{j} \frac{j!(2 j-2 k)!}{((j-k)!)^{2}}\binom{j}{2 j-2 k}(2 x)^{2 k-j}\left(x^{2}-1\right)^{j-k}
$$

It is possible, albeit cumbersome, to prove that f_{j} is the $j^{\text {th }}$ Legendre polynomial by using known identities. However, this approach can be avoided by using Zeilberger's algorithm (see [2]) for combinatorial sums. Given a sum of hypergeometric type, this technique produces a recurrence relation satisfied by the sum. Using Maple's built-in command for Zeilberger's algorithm, one finds that

$$
(j+2) f_{j+2}(x)=(2 j+3) x P_{j+1}(x)-(j+1) P_{j}(x)
$$

for all natural numbers j, the same recurrence as equation (2). It is easy to see that $f_{0}=1$ and $f_{1}=x$, implying that the expression f_{j} is indeed the $j^{\text {th }}$ Legendre polynomial, that is,

$$
\begin{equation*}
P_{j}(x)=\sum_{k=0}^{j} \frac{(2 j-2 k)!}{2^{j}((j-k)!)^{2}}\binom{j}{2 j-2 k}(2 x)^{2 k-j}\left(x^{2}-1\right)^{j-k} \tag{4}
\end{equation*}
$$

This new expression can be compared to two similar well-known expressions [3]:

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}^{2}(x-1)^{n-k}(x+1)^{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 n-2 k}{k} x^{n-2 k} \tag{6}
\end{equation*}
$$

The first formula is readily expanded around $x= \pm 1$, while the second formula expands around $x=0$. The new formula (4) can be expanded around all three values.

References

[1] Chamberland, M. Factored Matrices can generate Combinatorial Identities. Electronic Journal of Combinatorics, 1:1-9. 1994.
[2] Petkovsek, M., Wilf, H. and Zeilberger, D. $A=B$. AK Peters, Natick, MA, 1996.
[3] Legendre polynomials, Wikipedia. http://mathworld.wolfram.com/LegendrePolynomial.html

Department of Mathematics and Statistics, Grinnell College, Grinnell, IA 50112,

E-mail address: chamberl@grinnell.edu
Department of Mathematics and Statistics, Grinnell College, Grinnell, IA 50112,

[^0]: Key words and phrases. Matrix factorization, Legendre polynomials, Zeilberger's algorithm.

