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1 Introduction

The Jacobian Conjecture is a long-standing open problem which has linked

many ideas in algebra and analysis. We let F′(x) denote the Jacobian of the

function F at x. Limiting ourselves to the field lRn, we have the

Jacobian Conjecture on lRn: Is every polynomial map F : lRn → lRn such

that detF′(x) ≡ 1 a bijective map with a polynomial inverse?
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This problem is usually posed over the field lCn. Up to the writing of this

paper, this conjecture has remained open, even in the case n = 2. This problem

is not to be confused with the related

Real Jacobian Conjecture on lRn: Is every polynomial map F : lRn → lRn

such that detF′(x) 6= 0 injective?

This conjecture was proven false by Pinchuk[14]. The counter-example is

with n = 2 and involves polynomials of degrees 10 and 25. More thorough

discussions concerning the Jacobian Conjecture may be found in (for example)

[1], [10], [17], and [18]. A thorough bibliography concerning polynomial maps

and the Jacobian Conjecture is maintained by Gary Hosler Meisters[11].

Limiting ourselves to polynomial maps F with det F′(x) ≡ 1, there are two

important reductions to the Jacobian Conjecture.

Reduction 1: If the polynomial map F : lRn → lRn is injective, then it is also

surjective.

Proofs may be found in [15] and [2]. A map F is in cubic-homogeneous form

if F(x) = x −H(x) where H(tx) = t3H(x) for all t ∈ lR and x ∈ lRn.

Reduction 2: The maps F : lRn → lRn are injective in every dimension n and

every degree if and only if every such map of the cubic-homogeneous form is

injective.

The second reduction was obtained by Bass, Connell and Wright[1] and

Yagzhev[19]. Of relevance to this discussion is that the cubic-homogeneous

polynomials have Jacobian matrices whose eigenvalues are all one at all points

x ∈ lRn (since H′(x) must be nilpotent).

In light of these reductions, many authors (see the forementioned references)

have proved injectivity in a limited number of cases by considering the cubic-

homogeneous polynomials. The main result of this paper takes a different ap-

proach.
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Theorem 1.1 Suppose f : lR2 → lR2 is real-analytic and f ′(x, y) has both eigen-

values equal to one for all (x, y) ∈ lR2. Then f is a diffeomorphism. Specifically,

if

f(x, y) =





u(x, y)

v(x, y)





then




x

y



 =





u − c sin θ − (cos θ)h((sin θ)u + (cos θ)v − c)

v − c cos θ + (sin θ)h((sin θ)u + (cos θ)v − c)





for some constants θ, c and a real-analytic function h. Moreover, if f is a

polynomial, then its inverse is also a polynomial.

The proof depends on an interesting result concerning a quasi-linear partial

differential equation. Section 2 is devoted to this result while Section 3 gives

the proof of Theorem 1.1.

2 A Supporting Theorem

Theorem 2.1 Let u : lR2 → lR be a solution to

(cosu)ux − (sin u)uy = 0. (1)

Then u is a constant function.

Proof: Suppose u = u(x, y) is a global solution to (1). The Method of

Characteristics for quasi-linear partial differential equations implies that u is

constant along solution curves of the system

ẋ = cosu (2)

ẏ = − sin u (3)

where x and y are functions of t, thus the base characteristics (orbits of the

system) are straight lines. It is impossible for two orbits to cross because of



4

uniqueness and the lack of critical points, hence all the orbits are parallel lines.

This implies u must take the form

u(x, y) = k(x cos α + y sin α)

for some constant α and real-analytic function k. Substituting this into (1) gives

0 = (cosu)(k′) cosα − (sin u)(k′) sin α

= k′ cos(u + α).

Both cases k′ ≡ 0 and cos(u + α) ≡ 0 imply u is a constant function. 2

Remark 2.1 The method of characteristics showed that the base character-

istics are straight lines. This may be shown by considering the curvature of

systems of the form

ẋ = cosu(x, y) (4)

ẏ = − sinu(x, y) (5)

for any smooth function u. One may show that for the system represented by

ẋ = f(x, y)

ẏ = g(x, y)

the curvature of the orbit passing through the non-equilibrium point (x, y) is

given by

H(x, y) =
f2gx + (gy − fx)fg − fyg

2

(f2 + g2)3/2
.

The curvature of the orbits of a system was recently used by Chamberland[3]

and Garcia et al.[7] to obtain results concerning global asymptotic stability in

certain planar systems related to the Markus-Yamabe conjecture. Since the

speed of the system (4)–(5) is always one, the curvature of the orbits of this
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system at (x, y) is

H(x, y) = (cosu)2(−(cosu)ux) + [−(cosu)uy + (sin u)ux] cosu(− sinu)

− (−(sin u)uy)(sin u)2

= −(cosu)ux + (sin u)uy

= 0 for all x, y.

This forces orbits of the system to lie on straight lines.

Remark 2.2 One may rewrite (1) as

∂

∂x
sin u +

∂

∂y
cosu = 0. (6)

By considering the system

ẋ = sin u(x, y)

ẏ = cosu(x, y)

equation (6) implies the divergence of this flow is identically zero. In contrast to

Bendixson’s Criteria for the elimination of periodic orbits, it has been suggested

(see Perko[13, p.246]) that such a condition may imply a center exists. This is

impossible for the flow under consideration since it has no equilibrium points.

Theorem 2.1 indicates that not only is there no center, but all the orbits are

parallel straight lines. This flow is orthogonal to the flow (2)–(3) used in the

proof of the Theorem 2.1.

Remark 2.3 Imitating the previous remark, define the vector function

v := (v1, v2) = (sin u, cosu)

to give

∇ · v = 0, |v| = 1

Interpreted in a physical sense, Theorem 2.1 says that an imcompressible fluid

which always moves with a non-zero constant speed must be a rigid translation.
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Remark 2.4 Interpreting equation (6) as a condition for exactness, this forces

the existence of a function v = v(x, y) such that

vx = sin u, vy = − cosu

which implies

v2

x + v2

y = 1

This is known as the Eiconal equation, or the equation of geometrical optics,

which is used to describe wave fronts for a wave with constant speed (see

Garabedian[6, pp.40–44]). To obtain a global solution, we would require that

there are no caustics, that is, places where the wave front intersects itself. The-

orem 2.1 confirms one’s intuition that this may only occur when the wave front

is a line. The avoidance of caustics alludes to the fact that having motion in

straight lines (local result) is not sufficient in itself to give the desired result; we

additionally require this condition to hold everywhere (globally).

3 Proof of Main Theorem

Now we prove Theorem 1.1.

Proof: By Schur’s Theorem of matrix analysis (see, for example, [16, p.308]),

there exists functions A = A(x, y) and θ = θ(x, y) such that





ux uy

vx vy



 =





cos θ sin θ

− sin θ cos θ









1 A

0 1









cos θ − sin θ

sin θ cos θ



 (7)

=





1 + A(cos θ)(sin θ) A(cos θ)2

−A(sin θ)2 1 − A(cos θ)(sin θ)



 (8)

Since u and v are real-analytic, this forces A and θ to be real-analytic. Since

uxy = uyx and vxy = vyx, we have

∂

∂y
(A(cos θ)(sin θ)) =

∂

∂x
(A(cos θ)2)
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∂

∂y
(A(sin θ)2) =

∂

∂x
(A(cos θ)(sin θ))

which may be expanded as

(A(sin θ))y cos θ + A(sin θ)(cos θ)y = (A cos θ)x cos θ + A(cos θ)(cos θ)x (9)

(A(sin θ))y sin θ + A(sin θ)(sin θ)y = (A cos θ)x sin θ + A(cos θ)(sin θ)x (10)

Multiplying (9) by sin θ and (10) by cos θ then subtracting yields

0 = A
[

(sin θ)2(cos θ)y − (sin θ)(cos θ)(sin θ)y − (sin θ)(cos θ)(cos θ)x

+ (cos θ)2(sin θ)x

]

= A [−(sin θ)θy + (cos θ)θx]

The real-analyticity of the functions involved implies two cases. If A ≡ 0, this

gives

u = x + c1

v = y + c2

where c1, c2 are constants. This is clearly a diffeomorphism. The other case

requires

−(sin θ)θy + (cos θ)θx = 0

for all (x, y) ∈ lR2. By Theorem 2.1, we have θ = θ(x, y) is a constant function.

By making the change of variables





ū

v̄



 =





cos θ − sin θ

sin θ cos θ









u

v



 ,





x̄

ȳ



 =





cos θ − sin θ

sin θ cos θ









x

y





and Ā(x̄, ȳ) = A(x, y), we obtain





ūx̄ ūȳ

v̄x̄ v̄ȳ



 =





1 Ā

0 1



 .
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This implies

v̄ = ȳ + c

ū = x̄ + h(ȳ)

where c is a constant and h′(ȳ) = Ā. This may be inverted to give

x̄ = ū − h(v̄ − c)

ȳ = v̄ − c.

Changing back to the original variables gives





x

y



 =





u − c sin θ − (cos θ)h((sin θ)u + (cos θ)v − c)

v − c cos θ + (sin θ)h((sin θ)u + (cos θ)v − c)





Suppose the f is a polynomial, namely, u and v are polynomials. Then since

θ is constant, equation (8) implies A is a polynomial, and hence so is Ā and h.

This implies x and y are polynomial functions of u and v. 2

Remark 3.1 It should be noted that the injectivity implied by Theorem 1.1

follows immediately from results related to the Markus-Yamabe Conjecture in

dimension two. Olech[12] proved that the Markus-Yamabe Conjecture is equiv-

alent (for n = 2) to the statement: If f : lR2 → lR2 is C1 and the eigenvalues λ

of f ′(x) have <λ < 0 for all λ at all points x, must f be injective? This result

was proved in [5], [8], and [9]. Applying the result to −f proves the injectivity,

and Reduction 1 implies f is also surjective. It should be noted that the three

proofs cited use significantly more advanced techniques than those used in this

paper.

Remark 3.2 Theorem 1.1 cannot be extended to maps which are not every-

where defined. Consider the example (see [4])

F(x, y) =





x − x2

2y2

y − x
y



 .
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This function is not defined on the line y = 0. The Jacobian F′(x, y) has both

eigenvalues equal to one on its domain. However, F(6, 3) = F(12,−3) = (4, 1),

so the map is not injective.

Acknowledgement: I would like to thank Gary Hosler Meisters for interesting

discussions about this paper and to the Grant Board at Grinnell College for

making such discussions possible.
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