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Abstract. Consider the problem of heat flow in a convex domain in R"
with Dirichlet boundary condition and constant initial temperature. We
show that the solution has a fixed hot spot if the domain is invariant under
the action of an essential symmetry group.
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1 Introduction

In an open question posed in STAM Review, M. Klamkin[7] asks whether
convex domains with fixed hot spots have centrosymmetry. To be more
precise, let { be a bounded convex domain in R™ and let w :  x (0,00) — R

be the solution to the problem

2—1: =Au, (z,t) € Q x(0,00) (1)
uw(z,0) =1, z€ (2)
w(z,t) =0, xe€d, te(0,00). (3)

To ensure uniqueness of a solution to this system, we require that the solution
is bounded (see Walter[14, subsection 28.5-28.7]). This will actually imply
the function u takes values in the set [0, 1]. We are interested in characterizing
the domains €2 which have a fixed hot spot, that is, the domains where the

set
P(t) = {¢ € Qu(e,t) = maxue )}
z€
consists of a single unchanging point.
Contributions to this problem have recently been made by Gulliver and

Willms[4] and Kawohl[5, 6]. Essential to the discussion is the following well-

known result:

Theorem 1.1 (Brascamp and Lieb[2]) The level curves of the solution to
(1)-(3) are convex.

The regularity of the solution together with Theorem 1.1 implies there is

exactly one critical point (maximum) for each time ¢t > 0. One writes the



solution to (1)—(3) in an eigenfunction expansion as

u(z,t) = iaie_)‘itui(w) (4)

where (A;, u;) are the eigenvalue-eigenfunction pairs for the Dirichlet Lapla-

clan in Q, and
i = i d, '——1,2,---
a / (12 ($) r 7

Since the first eigenvalue is simple (ie. has multiplicity one), the scaled
function #; dominates the solution w for large ¢, hence if a stationary hot
spot exists, it is simply the unique maximum of u;. Denote this maximum
point as P. Using the inequalities of Payne and Stakgold[11] for convex
domains, we have

™
NV

thus giving a rough idea where P is located. The idea of dominating terms

min{|z — P|:z € 0Q} >

in the eigenvalue expansion can be extended to give the following necessary
and sufficient condition for a convex domain €2 to have a stationary hot spot.

The necessity of the condition is due to Kawohl[6].

Theorem 1.2 Suppose Q is a conver domain. Then § has a stationary hot
spot at P, the critical point of w1, if and only if

7

k=m
when Ap_1 < Ay = -+ = Ay, < Apg1 for each possible m and n.

The sufficiency follows easily from Theorem 1.1.



Corollary 1.2.1 Suppose £ is a convex domain with simple eigenvalues.

Then  has a stationary hot spot at P, the critical point of uwy, if and only if
Vuk(P)/ up(z)de =0 (6)
Q
fork=1,2,---.

It is not apparent how Theorem 1.2 may be exploited.

Now we consider finding sufficient conditions in terms of the geometry of
the domain. In the original question, Klamkin asked whether domains with
a fixed hot spot must be centrosymmetric. Gulliver and Willms state that “a
body is centosymmetric about a point P if for every A on the boundary, there
exists another point A’ on the boundary such that P is the midpoint of the
line segment AA’.” In two dimensions, the equilateral triangle is a counter-
example to Klamkin’s assertion, while in three-dimensions, we consider the
regular tetrahedron. In both [4] and [5], theorems are given which state that
if n independent (n—1)-dimensional hyperplanes of reflection symmetry exist
for the region €2, then 2 has a stationary hot spot, while in [6] it is shown
that centrosymmetry of () gives the same conclusion. In section 2 we shall
generalize these results by showing that if { admits an essentially acting
symmetry group then the hot spot is fixed for all time. In sections 3 and 4
we explore this sufficient condition in two and three dimensions, respectively.
In the final section we give new conjectures on how to characterize such

domains.



2 A Sufficient Condition in Terms of Symme-
try

As a preliminary result we will use the following:

Theorem 2.1 Let g : R" — R" be an affine transformation such that
g(Q) = Q. Then g(z) = &, where

Jo zdx
Jo dx

Tr =

18 the centroid of the domain §2.

Proof: Since g is an affine transformation, we have g(z) = Az + b, where

A is an orthogonal n x n matrix and b € R". We then have

/widw = z;dr
Q Q)

> aijm 4 b; ) | det A|dz

(5
(

Zamwj + b)

J=1

I
M: S S5~

a;; | z;de —I—/ bidzx,

1 Q

.
Il

thus
id “
T; = Jo ridz = ) aiT; + b,
Jo dx et

which implies Z = ¢(Z). O

Theorem 2.1 implies that the symmetries of {} form a subgroup G of the
orthogonal group O(n). Without loss of generality, we assume { has its

centroid at the origin.



We say the subgroup G of O(n) is essential if for any = # 0 there exists
a g € G such that g(z) # x. We now offer the main result of this section.

Theorem 2.2 If Q admits an essential symmetry group, then the origin is

a stationary hot spot.
To prove this result, we require one supporting lemma.

Lemma 2.1 If the C* function f is invariant under G, an essentially acting

subgroup of O(n), then Vf(0) = 0.

Proof: The invariance of f implies f(g(z)) = f(z) for ¢ € G. Since
G is a subgroup of O(n), we know g(z) = Az for some orthogonal n x n
matrix A. By the chain rule, V f(g(z)) Dg(z) = Vf(z). Setting z = 0 gives
ATVF(0)T = VF(0)T. If V£(0)T # 0, then the group G is not essential, a
contradiction. Therefore V f(0)T = 0. m

The proof of Theorem 2.2 now follows.
Proof: Because of the invariance of the heat equation under O(n) and the
uniqueness of the boundary value problem, u(-,t) satisfies the conditions of
the lemma for each ¢ € (0,00). This implies the origin is a critical point for

all time, and thus a stationary hot spot (by Theorem 1.1). O

Some results for our hot spot problem follow immediately from this the-
orem. If the domain is centrosymmetric or admits n independent (n — 1)-
dimensional hyperplanes of reflection symmetry, then the corresponding sub-
group G generated from these symmetries is essential, so the centroid is a sta-
tionary hot spot for that domain. In the following sections, we shall consider

how Theorem 2.2 applies in dimensions two and three.



3 Planar Domains

The question of finding domains which admit a stationary hot spot in two
dimensions is straightforward in the context of the last section since there is

a simple characterization of the finite subgroups of O(2).

Proposition 3.1 If G is a finite subgroup of O(2), then it is isomorphic to
either C,, (the cyclic group of ordern) or D,, (the dihedral group of order 2n)

for some positive integer n.

The proof may be found in Gilbert[3]. Geometrically, the cyclic groups
C,. correspond to rotations by 27 /n radians. If n > 2, these groups are
clearly essential. Domains which are centrosymmetric admit a symmetry
group containing C,. The cases of the equilateral triangle and the set 2
considered by Gulliver and Willms where Q = {(r,0)|r < 11+ cos(360)} admit
a symmetry group containing Cs, thus they have a stationary hot spot.

The dihedral groups D,, correspond to a rotation and a reflection, and
these groups are essential for all positive integers n. If a symmetry group
G is infinite, then the domain 2 must be the disc; this is clear by a density
argument on the circle.

The papers of Kawohl and Gulliver and Willms gave results only for
domains with reflection symmetries and centrosymmetry. It should be noted
that if a domain admits two independent lines of reflection symmetry, then
it also admits a symmetry group C, for some n > 2 since two reflections is

equivalent to a rotation (see Ryan[12]).



Kawohl argues that, intuitively, a domain with a stationary hot spot
will admit a certain amount of symmetry. Kuttler and Sigillito[8] state that
regions with symmetries will often have multiple eigenvalues. In light of these

remarks, we offer

Theorem 3.1 If a convex region Q admits a symmetry group C, for some

n > 3, then Ay = As3.

Proof: Alessandrini[1] recently proved that for any convex domain Q C R?,
the unique nodal line of an eigenfunction corresponding to Ay must go the
boundary of Q. Since Q admits a symmetry group C,, with n > 3, the nodal
line of an eigenfunction would not be invariant under a rotation of 27 /n

about P, hence A, is not simple. O

We cannot expect a higher multiplicity since Lin[9] showed that for con-
vex domains, the multiplicity of A, is at most two. Also, centrosymmetric
domains need not have multiple eigenvalues. Consider a rectangle 0 < z < a,
0 <y < b, where a® and b® are incommensurate. It is well-known that the

eigenvalues of this rectangle are

If Amm‘ = A’ﬁl,fu then

m? —m? =2 (n® —a?).

T

Since a?/b? is irrational, we must have n = 2 and m = m, thus the eigenvalues
of this rectangle are simple.
Lastly, we point out that domains which admit a symmetry group need

not admit either a reflection symmetry or centrosymmetry. Consider the



Figure 1: A domain with C3 symmetry, yet with neither reflection symmetry

nor centrosymmetry.

modification of the equilateral triangle in Figure 1; this region admits a Cs

symmetry yet none other.

4 Three Dimensions

The situation for Q@ C R® is much more challenging than the planar case. We
shall cite group-theoretic results from Gilbert|[3].

A classical result states that the finite subgroups of SO(3) are isomorphic
to the cyclic groups C,, the dihedral groups D,,, the alternating groups Ay
and As, and the symmetric group S;. The last three groups represent the



Platonic solids. All of these groups, except for C;, are essential. It is also
known that finite subgroups of O(3) contain at least one of these groups,
besides C;.

In three dimensions, however, we cannot conclude that a subgroup of
O(3) which is infinite must be a sphere; any volume of revolution admits
an infinite symmetry group. It is known that each non-identity element of
SO(3) has a unique fixed axis. If the domain  admits two different axes of
rotation, then ) admits an essential subgroup of O(n), so it has a stationary
hot spot. The same may be said if {2 has an axis of rotation and a plane of
reflection symmetry which does not contain the axis.

Lastly, we can modify the regular tetrahedron , as we modified the triangle
for the planar case, to obtain a domain which has a stationary hot spot but
has no reflection symmetry and is not centrosymmetric. Define a concave
function on the equilateral triangle which is rotationally symmetric, yet which
admits no reflection symmetry. Also, we require that the gradient of the
function is sufficiently small. Superimposing this function on each face of the
tetrahedron gives a domain which is convex (the reason for the sufficiently
small gradient), and admits the required symmetry to apply the reasoning
of the last paragraph, thus yielding a domain with a stationary hot spot.

Similar modifications may be made to the other Platonic solids.

5 Conclusion

In light of the results obtained thus far, we make new conjectures:



Conjecture 5.1 If a bounded convex domain  C R? possesses a stationary
hot spot, then there exists » > 2 such that Q admits a symmetry group

containing C,,.
An affirmation of Conjecture 5.1 would immediately imply the simpler

Conjecture 5.2 If a bounded domain € C R? has a stationary hot spot

and no multiple eigenvalues, then € is centrosymmetric.

Conjecture 5.3 If a bounded convex domain  C R® possesses a stationary
hot spot, then either £ has two independent axes of rotation symmetry or it
has one axis of rotation symmetry and one plane of reflection symmetry not

containing the axis.

Conjecture 5.4 If a bounded convex domain £2 C R" possesses a stationary

hot spot, then its symmetry group G acts essentially.

Conjecture 5.4 implies all the other conjectures.

These conjectures are not the first to suggest that extra conditions on well-
posed problems imply certain symmetry on the domain in question. Several
theorems or conjectures have been made (see for example [10], [13],[15]) which
claim that the existence of a solution to certain over-determined boundary

value problems imply the domain is a ball.
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