Generalizing Gauss’'s Gem
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Gauss’s Cyclotomic Formula [3, pp.425-428, p.467] is a neglected mathemat-
ical wonder.

Theorem 1.1. (Gauss) Let p be an odd prime and set p' = (—1)P=V/2p. Then

there exist integer polynomials R(x,y) and S(x,y) such that
Az + yP) 2 2
= R(x, —p'S(x,y).

s (z,y)” = p'S(z,y)

The goal of this note is to generalize this theorem. Denote a circulant matrix
as

X1 o T3z - Tp

Tp r1 To - Tp—1
cire(z1,xa,...,xp) = | Tp—1 FTp T1 0 Tp-2

Xro r3 Ty - X1

Let (%) be the Legendre symbol, that is, for j # 0 (mod p), (%) =1or
—1 according as j is or is not a quadratic residue mod p. A multivariable
generalization of Theorem 1.1 follows. Theorem 1.1 is a special case of Theorem

1.2 withxz3 =--- =2, =0.

Theorem 1.2. Let p be an odd prime and p' = (—1)P~Y/2p. Then there exist
integer polynomials R(x1,x2,...,%p) and S(x1,T2,...,xp) such that

4 - det(circ(zr, x2,. .., zp))
T+ x24T

= R(x1,29,...,7,)% —p'S(21,72,...,2p)%

Specifically, one can take R(z1,x2,...,2p) = A+ B and S(z1,22,...,2p) =
(A — B)/\/p where

A = I @+ m+ Pyt (P Wy,
(=1
B = I (u1+aat Pyt + P Vigy),

(3)=-1

th

and € is a primitive p*" root of unity.



Proof. Tt is well-known [4] that

—1
det(circe(zy, x2, ..., xp)) L . 9 Y

) ) ? — T + I + J 4+t (p )]1' . 1

T+ x24T jl;[l(l C 2 C 3 C P) ()

The choice of R and S given above then easily satisfy the desired equation,
A_RB 2 p—1 p o
R —pfs® — (A+B)P—p (W ) 4B =4[ Y e
b

4 - det(cire(z1, x2, ..., zp))
x1+ T+t '

j=11i=1

The challenge now is to show that both R and S are polynomials with integer
coefficients.

Let p be a prime > 3, let p’ = (—1)P=1/2p_let ¢ be a primitive pth root
of unity, and let K = Q(¢) be the cyclotomic field of pth roots of unity. For
any integer k such that 1 < k < p — 1, define the mapping o, on K by setting
01(¢) = ¢* and extending the map linearly. Then K is a Galois extension of
degree p — 1 over the rational field Q with cyclic Galois group G = {ox|1 <k <
p—1}. G also acts on Q(¢)[z1,...,xp| by setting ox(z;) = z; and extending
the action linearly; see [2, p.596ff] for details and further information.

Let a = E(T/p):l (" and 8 = 2:(71/17):71 ¢™. A bit of algebra shows that
f=-a—1and af = (1—p')/4; thus, a = (=1 /') /2 and B = (-1 F D) /2,
for some choice of signs. The set of mappings H = {oj|(k/p) = 1} is a subgroup
of G of index 2, whose fixed field is the quadratic field Q(«). Note that both
A and B are in Z(¢)[z1, ..., xp]. We now show that A+ B € Z[z1,..., x| and
that A — B € Z(o)[z1,. .., xp)

The product rule for the Legendre symbol states that if j and k are relatively

prime ‘O p then
— - - .

Thus, if (%) = 1, then replacing ¢ by ¢¥ in A and B permutes the factors of A

and the factors of B. Similarly, if (%) = —1, then replacing ¢ by ¢* in A and
B exchanges the factors of A with the factors of B. It follows that if (%) =1,

then the action of o on Q(¢)[z1, .. ., x,] fixes both A and B, while if (%) =1,

then the action of oy on Q(¢)[x1,...,xp) interchanges A and B. We conclude
that o, (A + B) = A+ B for all k, so that A + B is invariant under the action
of every element of the Galois group G. Thus, the coefficients of A 4+ B lie in
the fixed field of G, namely the rational field Q, and so A+ B € Q[x1, ..., zp).
But A+ B € Z(¢)[x1, ..., xp], so it follows that R = A+ B is a polynomial with
integer coefficients.

We now turn to S = (A — B)/+/p’. By previous results, the coefficients of
A and B are in the field fixed by the index-2 subgroup H of the Galois group



G, namely Q(a). Since A, B € Z(¢)[z1,...,xp], it follows that both A and B
are in Z(a)[x1,...,xp]. Hence, there exist polynomials f = f(z1,...,2,) and
g =g(z1,...,xp) with integer coefficients such that A = f + ga.

Let n be a fixed quadratic nonresidue mod p. The nontrivial automorphism
of Q(«) sends « to 8. As A is not fixed by o, we see that o, («) = 8. Hence,

B=0,(A)=0n(f +ga)=f+g8.

It follows that A — B = g(a — f3), where g has integer coefficients. Then, by
previous work and a little more algebra, we see that o — 8 = 4+/p’. It follows

that N
— B + /
S = 7 g\/,ﬁ - :l:gv
v v
a polynomial with integer coeflicients. O

In the case when p = 1 mod 4, the functions R and S given in Theorem 1.2
are not unique. The Pell equation

a? —py? =1 (2)
has infinitely many integer solutions for any prime p (see [1]). Since
(z7 — pyi)(@5 — py3) = (z122 + py1y2)® — p(@1y2 + T201)%,

any solution (z,y) to equation (2) may be used in conjunction with the solution
(R, S) in Theorem 1.2 to produce another pair of polynomials

R =zR+pyS, S =azS+yR.

which make Theorem 1.2 work. Indeed, infinitely many such R and S exist.
The polynomials R and S rapidly grow in size. For p = 5, one has

R = 2,’1}12 — X9X5 — T5L3 — ToX1 + 23?22 — X1x3 — T5Lg4 — X3Xx2 — X1T4

—ToZy + 2 x32 + 21’52 — I1T5 — T4x3 + 2x42
and
S = —ToXy — X1X4 + Ty3 + IT5Ly4 — 53 + 3o + 15 — T1X3 —+ xox1 — ToX5.

For p =7, R has 84 terms and S has 56 terms.

A simple application of Theorem 1.2 involves a determinant considered by
Wendt in conjunction with Fermat’s Last Theorem. The so-called Wendt de-
terminant is defined by

= (e ((3)-(2)- () (21))

E. Lehmer claimed (later proved by J.S. Frame [5, p.128]) that

W, = (=1)""12" — 1)u?



for some u© € N. Since

n—1
") =om o,
> (i)

k=0
if n is an odd prime p, Theorem 1.2 implies

(2”)2 — R2 _ p152

for some integers u, R, and S. This equation clearly has a trivial solution if

S = 0. This situation occurs when p = —1 (mod 4) since
B= [ (a+¢&yr-1)= I (@+¢7yr-1= ] (@+)P-1)=A
(5)=1 (3)= (3=
The first few cases where S # 0 are
22° = 147° —5-65°,
154314145982 = 205223870910912 — 13 - 5691884464123,
1062723692434942886% = 8954437067502153571460714% — 17 - 21717699910151280352033202
and

87189395724962931255918190553412248667067025506452753022 =
8801866915656397716021519532258687362772409962179980790374047406788427>
—29 - 16344656534922192023242175836000067824599211903088364460383 756684515257,

References

[1] E. Barbeau, Pell’s Equation, Springer, New York, 2003.

[2] D.S. Dummit and R.M. Foote, Abstract Algebra, 3rd ed, John Wiley,
Hoboken, 2004.

[3] C.F. Gauss, Untersuchungen iber hohere Arithmetik, Chelsea, New
York, 1965.

[4] G. Golub and C. Van Loan, Matriz Computations, 3rd ed, John Hopkins
University Press, Baltimore, 1996.

[5] P. Ribenboim, Fermat’s Last Theorem For Amateurs, Springer, New York,
1999.

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061,
ezbrown@math.vt.edu

Department of Mathematics and Statistics, Grinnell College, Grinnell, 1A
50112,
chamberl@math.grinnell.edu



