Generalizing Gauss's Gem

Ezra Brown and Marc Chamberland

Gauss's Cyclotomic Formula [3, pp.425-428, p.467] is a neglected mathematical wonder.

Theorem 1.1. (Gauss) Let p be an odd prime and set $p^{\prime}=(-1)^{(p-1) / 2} p$. Then there exist integer polynomials $R(x, y)$ and $S(x, y)$ such that

$$
\frac{4\left(x^{p}+y^{p}\right)}{x+y}=R(x, y)^{2}-p^{\prime} S(x, y)^{2} .
$$

The goal of this note is to generalize this theorem. Denote a circulant matrix as

$$
\operatorname{circ}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & x_{p} \\
x_{p} & x_{1} & x_{2} & \cdots & x_{p-1} \\
x_{p-1} & x_{p} & x_{1} & \cdots & x_{p-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{2} & x_{3} & x_{4} & \cdots & x_{1}
\end{array}\right] .
$$

Let $\left(\frac{j}{p}\right)$ be the Legendre symbol, that is, for $j \not \equiv 0(\bmod p),\left(\frac{j}{p}\right)=1$ or -1 according as j is or is not a quadratic residue $\bmod p$. A multivariable generalization of Theorem 1.1 follows. Theorem 1.1 is a special case of Theorem 1.2 with $x_{3}=\cdots=x_{p}=0$.

Theorem 1.2. Let p be an odd prime and $p^{\prime}=(-1)^{(p-1) / 2} p$. Then there exist integer polynomials $R\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $S\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ such that

$$
\frac{4 \cdot \operatorname{det}\left(\operatorname{circ}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{x_{1}+x_{2}+\cdots+x_{p}}=R\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{2}-p^{\prime} S\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{2}
$$

Specifically, one can take $R\left(x_{1}, x_{2}, \ldots, x_{p}\right)=A+B$ and $S\left(x_{1}, x_{2}, \ldots, x_{p}\right)=$ $(A-B) / \sqrt{p^{\prime}}$ where

$$
\begin{aligned}
A & =\prod_{\left(\frac{j}{p}\right)=1}\left(x_{1}+\zeta^{j} x_{2}+\zeta^{2 j} x_{3}+\cdots+\zeta^{(p-1) j} x_{p}\right), \\
B & =\prod_{\left(\frac{j}{p}\right)=-1}\left(x_{1}+\zeta^{j} x_{2}+\zeta^{2 j} x_{3}+\cdots+\zeta^{(p-1) j} x_{p}\right),
\end{aligned}
$$

and ζ is a primitive $p^{t h}$ root of unity.

Proof. It is well-known [4] that

$$
\begin{equation*}
\frac{\operatorname{det}\left(\operatorname{circ}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{x_{1}+x_{2}+\cdots+x_{p}}=\prod_{j=1}^{p-1}\left(x_{1}+\zeta^{j} x_{2}+\zeta^{2 j} x_{3}+\cdots+\zeta^{(p-1) j} x_{p}\right) \tag{1}
\end{equation*}
$$

The choice of R and S given above then easily satisfy the desired equation,

$$
\begin{aligned}
R^{2}-p^{\prime} S^{2} & =(A+B)^{2}-p^{\prime}\left(\frac{A-B}{\sqrt{p^{\prime}}}\right)^{2}=4 A B=4 \prod_{j=1}^{p-1} \sum_{i=1}^{p} x_{i} \zeta^{j(i-1)} \\
& =\frac{4 \cdot \operatorname{det}\left(\operatorname{circ}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{x_{1}+x_{2}+\cdots+x_{p}}
\end{aligned}
$$

The challenge now is to show that both R and S are polynomials with integer coefficients.

Let p be a prime >3, let $p^{\prime}=(-1)^{(p-1) / 2} p$, let ζ be a primitive p th root of unity, and let $K=\mathbb{Q}(\zeta)$ be the cyclotomic field of p th roots of unity. For any integer k such that $1 \leq k \leq p-1$, define the mapping σ_{k} on K by setting $\sigma_{k}(\zeta)=\zeta^{k}$ and extending the map linearly. Then K is a Galois extension of degree $p-1$ over the rational field \mathbb{Q} with cyclic Galois group $G=\left\{\sigma_{k} \mid 1 \leq k \leq\right.$ $p-1\}$. G also acts on $\mathbb{Q}(\zeta)\left[x_{1}, \ldots, x_{p}\right]$ by setting $\sigma_{k}\left(x_{i}\right)=x_{i}$ and extending the action linearly; see [2, p.596ff] for details and further information.

Let $\alpha=\sum_{(r / p)=1} \zeta^{r}$ and $\beta=\sum_{(n / p)=-1} \zeta^{n}$. A bit of algebra shows that $\beta=-\alpha-1$ and $\alpha \beta=\left(1-p^{\prime}\right) / 4$; thus, $\alpha=\left(-1 \pm \sqrt{p^{\prime}}\right) / 2$ and $\beta=\left(-1 \mp \sqrt{p^{\prime}}\right) / 2$, for some choice of signs. The set of mappings $H=\left\{\sigma_{k} \mid(k / p)=1\right\}$ is a subgroup of G of index 2 , whose fixed field is the quadratic field $\mathbb{Q}(\alpha)$. Note that both A and B are in $\mathbb{Z}(\zeta)\left[x_{1}, \ldots, x_{p}\right]$. We now show that $A+B \in \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$ and that $A-B \in \mathbb{Z}(\alpha)\left[x_{1}, \ldots, x_{p}\right]$

The product rule for the Legendre symbol states that if j and k are relatively prime to p then

$$
\left(\frac{j k}{p}\right)=\left(\frac{j}{p}\right)\left(\frac{k}{p}\right)
$$

Thus, if $\left(\frac{k}{p}\right)=1$, then replacing ζ by ζ^{k} in A and B permutes the factors of A and the factors of B. Similarly, if $\left(\frac{k}{p}\right)=-1$, then replacing ζ by ζ^{k} in A and B exchanges the factors of A with the factors of B. It follows that if $\left(\frac{k}{p}\right)=1$, then the action of σ_{k} on $\mathbb{Q}(\zeta)\left[x_{1}, \ldots, x_{p}\right]$ fixes both A and B, while if $\left(\frac{k}{p}\right)=-1$, then the action of σ_{k} on $\mathbb{Q}(\zeta)\left[x_{1}, \ldots, x_{p}\right]$ interchanges A and B. We conclude that $\sigma_{k}(A+B)=A+B$ for all k, so that $A+B$ is invariant under the action of every element of the Galois group G. Thus, the coefficients of $A+B$ lie in the fixed field of G, namely the rational field \mathbb{Q}, and so $A+B \in \mathbb{Q}\left[x_{1}, \ldots, x_{p}\right]$. But $A+B \in \mathbb{Z}(\zeta)\left[x_{1}, \ldots, x_{p}\right]$, so it follows that $R=A+B$ is a polynomial with integer coefficients.

We now turn to $S=(A-B) / \sqrt{p^{\prime}}$. By previous results, the coefficients of A and B are in the field fixed by the index-2 subgroup H of the Galois group
G, namely $\mathbb{Q}(\alpha)$. Since $A, B \in \mathbb{Z}(\zeta)\left[x_{1}, \ldots, x_{p}\right]$, it follows that both A and B are in $\mathbb{Z}(\alpha)\left[x_{1}, \ldots, x_{p}\right]$. Hence, there exist polynomials $f=f\left(x_{1}, \ldots, x_{p}\right)$ and $g=g\left(x_{1}, \ldots, x_{p}\right)$ with integer coefficients such that $A=f+g \alpha$.

Let n be a fixed quadratic nonresidue $\bmod p$. The nontrivial automorphism of $\mathbb{Q}(\alpha)$ sends α to β. As A is not fixed by σ_{n}, we see that $\sigma_{n}(\alpha)=\beta$. Hence,

$$
B=\sigma_{n}(A)=\sigma_{n}(f+g \alpha)=f+g \beta .
$$

It follows that $A-B=g(\alpha-\beta)$, where g has integer coefficients. Then, by previous work and a little more algebra, we see that $\alpha-\beta= \pm \sqrt{p^{\prime}}$. It follows that

$$
S=\frac{A-B}{\sqrt{p^{\prime}}}=\frac{ \pm g \sqrt{p^{\prime}}}{\sqrt{p^{\prime}}}= \pm g
$$

a polynomial with integer coefficients.
In the case when $p \equiv 1 \bmod 4$, the functions R and S given in Theorem 1.2 are not unique. The Pell equation

$$
\begin{equation*}
x^{2}-p y^{2}=1 \tag{2}
\end{equation*}
$$

has infinitely many integer solutions for any prime p (see [1]). Since

$$
\left(x_{1}^{2}-p y_{1}^{2}\right)\left(x_{2}^{2}-p y_{2}^{2}\right)=\left(x_{1} x_{2}+p y_{1} y_{2}\right)^{2}-p\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2},
$$

any solution (x, y) to equation (2) may be used in conjunction with the solution (R, S) in Theorem 1.2 to produce another pair of polynomials

$$
R^{\prime}=x R+p y S, \quad S^{\prime}=x S+y R .
$$

which make Theorem 1.2 work. Indeed, infinitely many such R and S exist.
The polynomials R and S rapidly grow in size. For $p=5$, one has

$$
\begin{aligned}
R= & 2 x_{1}^{2}-x_{2} x_{5}-x_{5} x_{3}-x_{2} x_{1}+2 x_{2}^{2}-x_{1} x_{3}-x_{5} x_{4}-x_{3} x_{2}-x_{1} x_{4} \\
& -x_{2} x_{4}+2 x_{3}^{2}+2 x_{5}^{2}-x_{1} x_{5}-x_{4} x_{3}+2 x_{4}^{2}
\end{aligned}
$$

and
$S=-x_{2} x_{4}-x_{1} x_{4}+x_{4} x_{3}+x_{5} x_{4}-x_{5} x_{3}+x_{3} x_{2}+x_{1} x_{5}-x_{1} x_{3}+x_{2} x_{1}-x_{2} x_{5}$.
For $p=7, R$ has 84 terms and S has 56 terms.
A simple application of Theorem 1.2 involves a determinant considered by Wendt in conjunction with Fermat's Last Theorem. The so-called Wendt determinant is defined by

$$
W_{n}=\operatorname{det}\left(\operatorname{circ}\left(\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}\right)\right) .
$$

E. Lehmer claimed (later proved by J.S. Frame [5, p.128]) that

$$
W_{n}=(-1)^{n-1}\left(2^{n}-1\right) u^{2}
$$

for some $u \in \mathbb{N}$. Since

$$
\sum_{k=0}^{n-1}\binom{n}{k}=2^{n}-1,
$$

if n is an odd prime p, Theorem 1.2 implies

$$
(2 u)^{2}=R^{2}-p^{\prime} S^{2}
$$

for some integers u, R, and S. This equation clearly has a trivial solution if $S=0$. This situation occurs when $p \equiv-1(\bmod 4)$ since
$B=\prod_{\left(\frac{j}{p}\right)=-1}\left(\left(1+\zeta^{j}\right)^{p}-1\right)=\prod_{\left(\frac{j}{p}\right)=1}\left(\left(1+\zeta^{-j}\right)^{p}-1\right)=\prod_{\left(\frac{j}{p}\right)=1}\left(\left(1+\zeta^{j}\right)^{p}-1\right)=A$.
The first few cases where $S \neq 0$ are

$$
\begin{aligned}
22^{2} & =147^{2}-5 \cdot 65^{2}, \\
15431414598^{2} & =20522387091091^{2}-13 \cdot 5691884464123^{2}, \\
1062723692434942886^{2} & =8954437067502153571460714^{2}-17 \cdot 2171769991015128035203320^{2}
\end{aligned}
$$

and
$8718939572496293125591819055341224866706702550645275302^{2}=$ $8801866915656397716021519532258687362772409962179980790374047406788427^{2}$ $-29 \cdot 1634465653492219202324217583600006782459921190308836446038375668451525^{2}$.

References

[1] E. Barbeau, Pell's Equation, Springer, New York, 2003.
[2] D.S. Dummit and R.M. Foote, Abstract Algebra, 3rd ed, John Wiley, Hoboken, 2004.
[3] C.F. Gauss, Untersuchungen über höhere Arithmetik, Chelsea, New York, 1965
[4] G. Golub and C. Van Loan, Matrix Computations, 3rd ed, John Hopkins University Press, Baltimore, 1996.
[5] P. Ribenboim, Fermat's Last Theorem For Amateurs, Springer, New York, 1999.

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, ezbrown@math.vt.edu

Department of Mathematics and Statistics, Grinnell College, Grinnell, IA 50112,
chamberl@math.grinnell.edu

