
The Series for e via Integration

This note describes yet another way of obtaining the classical series expan-
sion for e, namely
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by means of integrals, not by Taylor polynomials. This derivation is an inter-
esting application of integration by parts and it offers a nice introduction to
infinite series.
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for n = 0, 1, 2, . . . One may easily show that
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xn = −
1

e
+ nxn−1, n ≥ 1 (2)

Repeated use of this formula gives
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This may be readily verified by induction. By considering the integrand in the
definition of xn, one sees that |xn| ≤ 1 for all n. We then have
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and so we obtain
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