The Series for e via Integration

This note describes yet another way of obtaining the classical series expan-
sion for e, namely
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by means of integrals, not by Taylor polynomials. This derivation is an inter-
esting application of integration by parts and it offers a nice introduction to

infinite series.
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Let
forn =0,1,2,... One may easily show that
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and integrating by parts yields
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Repeated use of this formula gives
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This may be readily verified by induction. By considering the integrand in the
definition of z,,, one sees that |z,,| < 1 for all n. We then have
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and so we obtain
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