
DIVISIBILITY PROPERTIES OF A CLASS OF BINOMIAL SUMS

MARC CHAMBERLAND AND KARL DILCHER

Abstract. We study congruence and divisibility properties of a class of com-
binatorial sums that involve products of powers of two binomial coefficients,
and show that there is a close relationship between these sums and the theorem
of Wolstenholme. We also establish congruences involving Bernoulli numbers,

and finally we prove that under certain conditions the sums are divisible by
all primes in specific intervals.

1. Introduction

Sums of products of binomial coefficients, more simply called binomial sums
or combinatorial sums, have been of considerable interest for several centuries in
various areas of mathematics, in particular in combinatorics and number theory.
Many such sums can be evaluated in closed form, giving rise to combinatorial iden-
tities. One of the earliest combinatorial identities, now commonly known as the
Vandermonde convolution, is

(1.1)
n∑
k=0

(
x

k

)(
y

n− k

)
=
(
x+ y

n

)
,

where n ≥ 0 is an integer and x, y are arbitrary real numbers. It goes back to
Alexandre Vandermonde in 1772; however, it is reported in [12, p. 169] that this
identity was known to Chu Shih-Chieh in China as early as 1303. For an excellent
treatment of binomial sums and combinatorial identities, see [12, Ch. 5]. The
books [9], [10], [15], and [24] are almost exclusively devoted to this topic, and most
other books on classical or enumerative combinatorics also deal with combinatorial
identities to some extent. Most known combinatorial identities are collected in the
well-known general tables [11], [13], and [22]. Finally, the paper [25] treats the
topic in the language, and with the methods, of hypergeometric series, and various
modern aspects are discussed in [26]; this last paper also contains an extensive
bibliography.

In recent decades there has been renewed interest in binomial sums, primarily
as a result of R. Apery’s remarkable proof, in the late 1970s, of the irrationality of
ζ(3) (see, e.g., [27]) which relied on properties of the sequence

(1.2) A(n) :=
n∑
k=0

(
n

k

)2(
n+ k

k

)2

.
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The renewed interest in sums of this kind led to methods of “mechanical sum-
mation”, most notably the Gosper-Zeilberger (see, e.g., [12, Sect. 5.8]) and the
Wilf-Zeilberger [21] algorithms which have now been implemented in several major
computer algebra systems.

It is the purpose of this paper to study a special class of binomial sums, namely

(1.3) uεa,b(n) :=
n∑
k=0

(−1)εk
(
n

k

)a(2n
k

)b
,

for nonnegative integers a, b, n, and ε ∈ {0, 1}. Clearly the choice of ε determines
whether the sum is alternating or not. For certain small values of a and b the sums
in (1.3) have closed forms; this will be discussed in Section 2. Our initial motivation
for studying the sums in (1.3) has been the observation that the sequence

(1.4) u1
1,1(n) =

n∑
k=0

(−1)k
(
n

k

)(
2n
k

)
, n = 0, 1, 2, . . . ,

displays some interesting properties, including congruences similar to the well-
known theorem of Wolstenholme. This will be investigated in Section 3 in greater
generality. Section 4 then deals with the question of possible converses, and in the
process we consider congruences modulo powers of 2. In Sections 5 and 6 we study
more detailed divisibility and congruence properties (modulo odd primes) which
involve Bernoulli numbers and the concepts of irregular primes and irregular pairs.

While closed forms for the sums in (1.3) exist only for very few values of ε, a, and
b, Calkin [5] proved that u1

a,0(2n) is always divisible by
(
2n
n

)
, with a similar result

holding for u1
0,b(n). In Section 7 we extend this, in a somewhat different form, to

all uεa,b(n) under the condition that a + b + ε is even. We finish this paper with
some remarks on further generalizations in Section 8.

2. Closed Forms

In this brief section we collect all the closed forms for uεa,b(n) that are known for
various values of ε, a, and b. However, we must first explain what we mean by the
term “closed form”. For instance, all the sums in (1.3) can easily be rewritten as
special values of suitable hypergeometric functions; obviously, this cannot be meant
by “closed form”. A more reasonable informal definition is given in [5, p. 17], namely
“a sum of a fixed number of hypergeometric terms”, which means a sum of a fixed
number of products and quotients of factorials and powers depending on n. This is
also consistent with de Bruijn [2, p. 72].

Here, then, is the list of known closed forms. Unless otherwise indicated, a, b,
and n are nonnegative integers.

u0
0,0(n) = n+ 1, u0

1,0(n) = 2n,(2.1)

u0
2,0(n) =

(
2n
n

)
,(2.2)

u0
1,1(n) =

(
3n
n

)
,(2.3)

u1
a,0(2n+ 1) = 0,(2.4)

u1
0,0(2n) = 1, u1

1,0(2n) = 0 (n ≥ 1),(2.5)
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u1
2,0(2n) = (−1)n

(
2n
n

)
,(2.6)

u1
3,0(2n) = (−1)n

(
2n
n

)(
3n
n

)
= (−1)n

(3n)!
n!3

.(2.7)

Identities (2.1) and (2.5) are trivial or follow from the basic form of the binomial
formula. (2.2) comes from (1.1) with x = y = n, and (2.3) follows from (1.1) with
x = 2n, y = n. (2.4) follows by symmetry, and (2.6) is a well-known formula that
can be found, e.g., in [10, eq. (3.81)]. Identity (2.7) is due to Dixon and can also
be found, e.g., in [10, eq. (6.6)].

In order to obtain analogous identities to (2.1), (2.2) and (2.5)–(2.7) for a = 0,
we note that a simple symmetry consideration with (1.3) leads to the identity

(2.8) uε0,b(n) =
1
2

{
uεb,0(2n) + (−1)εn

(
2n
n

)b}
.

With this we immediately obtain

u0
0,1(n) = 22n−1 +

1
2

(
2n
n

)
,(2.9)

u0
0,2(n) =

1
2

(
4n
2n

)
+

1
2

(
2n
n

)2

,(2.10)

u1
0,1(n) =

(−1)n

2

(
2n
n

)
(n ≥ 1),(2.11)

u1
0,2(n) =

(−1)n

2

{(
2n
n

)
+
(

2n
n

)2
}
,(2.12)

u1
0,3(n) =

(−1)n

2

(
2n
n

){(
3n
n

)
+
(

2n
n

)2
}
.(2.13)

No other closed forms are known. In fact, de Bruijn [2, pp. 72 ff.] used asymptotic
methods to show that no closed forms for u1

a,0(2n) can exist for a ≥ 4, and it is
reported in [5] that for 3 ≤ a ≤ 9 there is no closed form for u0

a,0(n).

3. Connections with Wolstenholme’s theorem

A well-known result of Wolstenholme states that for any prime p ≥ 5 one has

(3.1)
(

2p− 1
p− 1

)
≡ 1 (mod p3).

This congruence is of interest also because no composite integer is known for which
it holds, and the truth of the converse of Wolstenholme’s theorem seems to be
a difficult problem. For a brief history, generalizations, and references on this
problem, see [19].

If we study the first terms of the sequence in (1.4), namely (starting with n =
0) 1,−1,−1, 8,−17,−1, 116,−334, 239, 1709,−7001, 9316, . . ., a congruence pattern
similar to (3.1) emerges. In fact, it appears that we have u1

1,1(p) ≡ −1 (mod p3)
for all primes p ≥ 5. This fact can be obtained in greater generality for uεa,b(p),
using Wolstenholme’s theorem.



4 MARC CHAMBERLAND AND KARL DILCHER

Theorem 3.1. For any prime p ≥ 5 we have

(3.2) uεa,b(p) ≡ 1 + (−1)ε2b (mod p3),

except when (ε, a, b) = (0, 0, 1) or (0, 1, 0).

The proof of this result depends on the following lemma which is of interest in
its own right. Let vεa,b(n) be the sum uεa,b(n) without the first and the last terms,
i.e.,

(3.3) vεa,b(n) :=
n−1∑
k=1

(−1)εk
(
n

k

)a(2n
k

)b
.

This sum will be mainly of interest when n is a prime.

Lemma 3.1. For any odd prime p we have

(3.4) vεa,b(p) ≡ 0 (mod pa+b+1),

except when ε = 0 and a+ b is odd, or when ε = 0 and p− 1 | a+ b, in which cases
the congruence (3.4) holds only modulo pa+b.

Proof. For an odd prime p and 1 ≤ k ≤ p− 1 we have(
p

k

)
= p

(p− 1)(p− 2) · · · (p− k + 1)
k!

(3.5)

≡ p (−1)(−2) · · · (−k + 1)
k!

≡ p (−1)k−1

k
(mod p2),

and similarly (
2p
k

)
≡ 2p

(−1)k−1

k
(mod p2).

Substituting this into (3.3), we get

(3.6) vεa,b(p) ≡ (−1)a+b2bpa+b
p−1∑
k=1

(−1)(ε+a+b)k

ka+b
(mod pa+b+1).

First, let a+ b ≡ ε (mod 2). It is a well-known fact that

(3.7)
p−1∑
k=1

1
ka+b

≡ 0 (mod p)

whenever a+ b is not a multiple of p− 1; see, e.g., [17, p. 353].
Next, suppose that a+ b 6≡ ε (mod 2). If a+ b is even then we have

2
p−1∑
k=1

(−1)k

ka+b
≡

p−1∑
k=1

(−1)k

ka+b
+
p−1∑
k=1

(−1)k

(p− k)a+b
(mod p)(3.8)

=
p−1∑
k=1

(−1)k

ka+b
+
p−1∑
k=1

(−1)p−k

ka+b
= 0 (mod p),(3.9)

since p is odd. This and (3.7), respectively, combined with (3.6), proves the lemma.
�

Remark. Lemma 3.1 will be considerably improved upon in Sections 5 and 6.
However, in its present form it is sufficient for the following proof.
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Proof of Theorem 3.1. Using Wolstenholme’s congruence (3.1), we obtain with the
definitions (1.3) and (3.3),

uεa,b(p) = 1 + (−1)ε
(

2p
p

)b
+ vεa,b(p)

= 1 + (−1)ε2b
(

2p− 1
p− 1

)b
+ vεa,b(p)

≡ 1 + (−1)ε2b + vεa,b(p) (mod p3).

By Lemma 3.1 we are done, with the exception of the following special cases:
u1

1,0(p) = 0 by (2.4), while by (2.11) we have

(3.10) u1
0,1(p) =

−1
2

(
2p
p

)
≡ −1 (mod p3),

by Wolstenholme’s theorem. Both cases are consistent with (3.2). Finally, when
ε = 0 and a = b = 1, the only exceptional prime is p = 3 (see Remark (2) above),
which is not covered by the theorem. This completes the proof. �

Remarks.
(1) Since (3.10) shows that this case is equivalent to Wolstenholme’s theorem

itself (as are the cases related to (2.2), (2.6), and (2.11)), Theorem 3.1 can be
considered a generalization of Wolstenholme’s theorem.

(2) While it is conjectured that the converse of Wolstenholme’s theorem is true,
this will not be the case for Theorem 3.1 in general. For instance, calculations
show that we have u1

1,1(n) ≡ −1 (mod n3) for the composite integers n = 10, 25,
146, and 586. These are all up to 1000, but there are a total of 75 such composite
integers up to 105; all have exactly two prime divisors, one of which is always 2 or
5.

Theorem 3.1 is not valid for p = 2 or p = 3 since the proof depends on Wolsten-
holme’s theorem which fails for these two primes. However, the sums uεa,b(p) have
only three, resp. four terms when p = 2, resp. p = 3, so that it is easy to deal with
these special cases separately. Also, since there is no reliance on Wolstenholme’s
theorem, it will be possible to prove the respective converses.

Theorem 3.2. Let ε ∈ {0, 1}, and a, b ≥ 0 be integers. Then

(3.11) uεa,b(2) ≡ 1 + (−1)ε2b (mod 8)

if and only if


b ≥ 2, or
b = 1 and a ≥ 1, or
b = 0, ε = 1, and a = 1, or
b = 0, ε = 0, and a ≥ 3.

We also have

(3.12) uεa,b(3) ≡ 1 + (−1)ε2b (mod 27)

if and only if


b ≥ 3 and 3 | b, or
b = 1, ε = 0, and a = 1, or
b = 0, ε = 1, and a = 2, or
b = 0, ε = 1, and a = 1.
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Proof. From (1.3) we immediately get

(3.13) uεa,b(2) = 1 + (−1)ε2a+2b + 2b3b.

For a + 2b ≥ 3 the second term on the right vanishes modulo 8, and for b ≥ 1 we
have 2b3b ≡ (−1)ε2b (mod 8). This proves (3.11) in the first two cases, while for
(a, b) = (0, 1) the congruence does not hold. This leaves the case b = 0, and we see
immediately that (3.11) holds if and only if 2a ≡ 1− (−1)ε (mod 8). When ε = 1,
this is only possible for a = 1, while in the case ε = 0 the congruence holds exactly
when a ≥ 3. We have thus covered all cases for the first half of the theorem.

For the second half we use again (1.3) to obtain

(3.14) uεa,b(3) = 1 + (−1)ε3a6b + 3a15b + (−1)ε20b,

and for a+ b ≥ 3 this reduces to

(3.15) uεa,b(3) ≡ 1 + (−1)ε20b (mod 27),

so (3.12) holds if and only if 10b ≡ 1 (mod 27). Since 10b = (1 + 9)b ≡ 1 + 9b
(mod 27), the congruence (3.15) holds if and only if 3 | b. This proves the result
for a+ b ≥ 3. The few remaining pairs (a, b) are easy to check using (3.14), which
leads to the last three cases; we omit the details. �

4. Exceptions to the converse of Theorem 3.1

As mentioned in the introduction to Section 3, the validity of the converse of
Wolstenholme’s theorem is a difficult unsolved problem. It is therefore natural to
ask whether or not for each triple (ε, a, b) the converse of Theorem 3.1 holds, i.e.,
whether there are composite integers p for which the congruence (3.2) holds.

We already remarked at the end of Section 3 that for (ε, a, b) = (1, 1, 1) coun-
terexamples exist. Computations show that there are many more cases in which
there are counterexamples to the converse of Theorem 3.1; however, all the com-
posites for which (3.2) holds seem to be powers of 2. We shall now explain this
phenomenon.

Theorem 4.1. Let ε ∈ {0, 1}, a ≥ 0, and b ≥ 4 be integers. Then

(4.1) uεa,b(2
r) ≡ 1 + (−1)ε2b (mod 23r)

if and only if

(4.2) 2 ≤ r ≤
⌊

2b+ 3− (−1)b

6

⌋
for ε = 1,

or

(4.3) 2 ≤ r ≤
⌊

2b+ 2s+ 3 + (−1)b

6

⌋
for ε = 0,

except when (ε, a, b) = (0, 0, 4), in which case (4.1) holds for 2 ≤ r ≤ 3. In addition,
for (ε, a, b) = (0, 1, 2) we have (4.1) with r = 2.

Remarks.
(1) With the exception of (ε, a, b) = (1, 1, 1) and the cases covered by this result,

we have not observed any other counterexamples to the converse of Theorem 3.1.
(2) Theorem 3.2 can be seen as supplementary to Theorem 4.1 for r = 1.

For the proof of Theorem 4.1 we need some congruences of certain binomial
coefficients modulo powers of 2. Congruence (4.4) below could probably be obtained
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as special case of the very general results in [14]; see also [6] for (4.6). However, for
the sake of simplicity and completeness we give separate proofs.

Lemma 4.1. Let r ≥ 1. Then(
2r+1 − 1
2r − 1

)
≡ 3 (mod 8),(4.4) (

2r+1

2r

)
≡ 6 (mod 16),(4.5) (

2r+1

k

)
≡ 0 (mod 4) (1 ≤ k ≤ 2r − 1).(4.6)

Proof. To prove (4.4), we rewrite(
2r+1 − 1
2r − 1

)
=

(2r+1 − 1)(2r+1 − 2)(2r+1 − 3) · · · (2r + 1)
(2r − 1)(2r − 2)(2r − 3) · · · 1

.

We see that each power of 2 in the denominator is matched with an equal power of
2 in the numerator. Thus we can eliminate all these powers of 2. Let g(n) denote
the integer n with all powers of 2 removed. Then we have

(4.7)
(

2r+1 − 1
2r − 1

)
=

(2r+1 − 1)!
2r(2r − 1)!2

=
g((2r+1 − 1)!)
g((2r − 1)!)2

≡ g((2r+1 − 1)!) (mod 8),

since x2 ≡ 1 (mod 8) for any odd integer x. Now

g((2r+1 − 1)!) = g((2r+1 − 1)(2r+1 − 2)(2r+1 − 3) · · · 2 · 1
= (2r+1 − 1)(2r+1 − 3) · · · 3 · 1 · g((2r − 1)!).

When r ≥ 2, we have

(2r+1 − 1)(2r+1 − 3) · · · 3 · 1 ≡
(
(−1)(−3)(−5)(−7)

)2r−2

≡ 1 (mod 8),

and thus,

(4.8) g((2r+1 − 1)!) ≡ g((2r − 1)!) (mod 8).

For r = 2 we have g((22 − 1)!) = g(6) = 3; hence using (4.8) we get by induction,
g((2r+1 − 1)!) ≡ 3 (mod 8). This, with (4.7), implies (4.4).

Next, since the left-hand side of (4.5) is twice the left-hand side of (4.4), we
immediately get (4.5). Finally, we write

(4.9)
(

2r+1

k

)
=

2r+1

k
· (2r+1 − 1)(2r+1 − 2) · · · (2r+1 − k + 1)

1 · 2 · 3 · · · (k − 1)
,

and by matching factors in the numerator and denominator of the right-most frac-
tion we see that the exact power of 2 dividing the binomial coefficient is the same
as that dividing 2r+1/k. Since the highest possible power of 2 in k is 2r−1, this
proves (4.6). �

Remark. The congruence (4.6) can easily be refined. For instance, (4.9) shows
immediately that for r ≥ 2 the highest power of 2 dividing

(
2r+1

k

)
for 1 ≤ k ≤ 2r−1

is 22 exactly when k = 2r−1, and it is at least 23 for all other k in this range.

For the next lemma and the proof of the theorem we use the notation ord2(n)
to mean the highest power of 2 that divides the integer n.
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Lemma 4.2. (a) When b ≥ 1 is odd, then

(4.10) ord2(3b − 1) = 1.

(b) When b = 2st, s ≥ 1 and t ≥ 1 is odd, then

(4.11) ord2(3b − 1) = s+ 2.

Proof. (a) Since 3c ≡ 1 (mod 8) for any even integer c ≥ 1, we have 3b ≡ 3 − 1
(mod 8), which implies (4.10).

(b) First we use the well-known fact (see, e.g., [20, p. 103]) that for odd integers
a we have

(4.12) a2s

≡ 1 (mod 2s+2);

raising both sides to the power t shows that the order in (4.11) is at least s + 2.
On the other hand, we show by induction that the congruence (4.12) does not hold
modulo 2s+3 when a = 3. Indeed, if this were the case then factoring (4.12) would
give (

32s−1
− 1
)(

32s−1
+ 1
)

= C2s+3

for some integer C. But ord2(32s−1
+1) = 1 for any s ≥ 2, and thus ord2(32s−1−1) ≥

s+2. Thus, going backwards, we would obtain ord2(32−1) ≥ 4, which is false. This
shows that (4.12) is best possible for a = 3. Finally, we consider the factorization

32st − 1 =
(

32s

− 1
)(

32s(t−1) + 32s(t−2) + . . .+ 32s

+ 1
)
.

Since the right-most factor has an odd number (namely t) of odd terms, we have
ord2(3b − 1) = ord2(32s − 1), which proves (4.11). �

Proof of Theorem 4.1. By (1.3), and since n is even, we have

(4.13) uεa,b(2
r) = 1 +

(
2r+1

2r

)b
+ vεa,b(2

r).

It is a well-known fact that 2 |
(
2r

k

)
for 1 ≤ k ≤ 2r − 1; this is actually analogous to

(4.6) and can be shown with the same arguments. This with (4.6) and (3.3) shows
that

(4.14) ord2(vεa,b(2
r)) ≥ 2b+ a.

To deal with the binomial coefficient in (4.13), we note that by (4.5) there is an
integer c such that(

2r+1

2r

)b
+ 2b = 2b(3 + 8c)b + 2b ≡ 2b(3b + 8bc3b−1 + 1) (mod 2b+3).

Since 3b + 1 ≡ 2 or 4 (mod 8) according as b is even, resp. odd, we have

(4.15) ord2

((
2r+1

2r

)b
+ 2b

)
=

{
b+ 1 if b is even,
b+ 2 if b is odd.

Next, using once again a binomial expansion, we have

(4.16)
(

2r+1

2r

)b
− 2b = 2b

3b − 1 + 8bc3b−1 +
b∑
j=2

(
b

j

)
8jcj3b−j

 .



DIVISIBILITY PROPERTIES OF A CLASS OF BINOMIAL SUMS 9

Since we can write (
b

j

)
8j = 8b

(
b− 1
j − 1

)
8j−1

j
,

and for j ≥ 2 the rational number 8j−1/j is certainly 2-integral, i.e., the denomina-
tor is not divisible by 2, the highest power of 2 dividing the right-most sum in (4.16)
has at least exponent ord2(8b). Now, for b = 2st, t odd, we have ord2(8b) = s+ 3.
Hence (4.10) and (4.11) applied to (4.16) give

(4.17) ord2

((
2r+1

2r

)b
− 2b

)
=

{
b+ s+ 2 if b is even,
b+ 1 if b is odd.

After these preliminaries we are ready to prove the statements of the theorem.
We begin with ε = 1. Then with (4.13) and (4.15) we have

(4.18) ord2(u1
a,b(2

r)− 1 + 2b) = b+
3
2
− 1

2
(−1)b,

provided that the right-hand side is less than 2b+ a, by (4.14). It is easy to check
that this is true for all b ≥ 2, a ≥ 0, and for b = 1, a ≥ 2. Now it is clear that (4.1)
holds if and only if the expression in (4.18) is at least 3r; but this is equivalent to
(4.2). The cases (a, b) = (0, 1), (1, 1) can be excluded by checking that (4.1) does
not hold for r = 2. Similarly, for all b < 4 we would get r < 2.

Finally, we consider ε = 0. Then with (4.13) and (4.17) we have

(4.19) ord2(u0
a,b(2

r)− 1− 2b) = b+ 2 +
3
2

+
1
2

(−1)b,

Once again we check that the right-hand side is less than 2b+a; this is the case for
all b ≥ 4, a ≥ 0, as well as for the following cases: b = 4 and all a ≥ 1; b = 3 and all
a ≥ 0; b = 2 and all a ≥ 2; b = 1 and all a ≥ 1. In all these cases the congruence
(4.1) holds if and only if (4.19) is at least 3r, which is equivalent to (4.3). Also, it
is easy to see that for all b < 4 we would once again get r < 2. The few cases not
covered above can be checked by computation, which leads to the final statement
of the theorem. �

5. Connections with Bernoulli numbers: the case ε = 0

In this section we study in greater detail the sums vεa,b(p) that were defined in
(3.3). Here we assume that p is always an odd prime. In particular, we deal with
the two exceptional cases of Lemma 3.1, and also improve on the congruence (3.4).

Throughout this section we make use of the Bernoulli numbers Bn defined by
the generating function

(5.1)
x

ex − 1
=
∞∑
n=0

Bn
xn

n!
, |x| < 2π.

It is easy to find the values B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and
Bn = 0 for all odd n ≥ 3. Furthermore, (−1)n−1B2n > 0 for all n ≥ 1. These and
many other properties can be found, for instance, in [1], [12], [23], or [28]. A fairly
complete bibliography can be found in [8].

It is clear from the proof of Lemma 3.1 that in order to deal with the exceptional
cases of that result, we have to evaluate, modulo p, the sum on the right-hand side
of (3.6). Congruences for non-alternating sums have been known since the late
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19th century (see [17] for more details), and these can easily be used to obtain
congruences for alternating sums as well.

Lemma 5.1. Let p be an odd prime. Then for any integer m, 2 ≤ m < p−1
2 , we

have

(5.2)
p−1∑
k=1

(−1)k

k2m−1
≡ 2

2m− 1
(
22−2m − 1

)
Bp+1−2m (mod p).

Furthermore,

(5.3)
p−1∑
k=1

(−1)k

k
≡ −2

2p−1 − 1
p

(mod p).

Proof. Clearly,

p−1∑
k=1

(−1)k

k2m−1
= 2

p−1
2∑

k=1

1
(2k)2m−1

−
p−1∑
k=1

1
k2m−1

(5.4)

≡ 22−2m

p−1
2∑

k=1

1
k2m−1

(mod p),

where we have used the congruence (3.7). By Fermat’s little theorem, and using
the congruence (17) in [17, p. 354], we get

p−1
2∑

k=1

1
k2m−1

≡

p−1
2∑

k=1

kp−2m (mod p)

≡
(
1− 2p+1−2m

) Bp+1−2m

2p+1−2m p+1−2m
2

(mod p)

≡
(
22m−2 − 1

) 2
1− 2m

Bp+1−2m (mod p).

This, combined with (5.4), gives (5.2). The congruence (5.3) is proved in [18,
p. 474]; it can also be found in [20, p. 97], Problem 14. �

Remark. The quotient in (5.3), namely

qp(2) :=
2p−1 − 1

p
,

is the well-known Fermat quotient to base 2. A prime p for which it vanishes
modulo p is called a Wieferich prime. Only two such primes are known, namely
p = 1093 and p = 3511; no others have been found up to 1.25 × 1015; see [16].
Fermat quotients and Wieferich primes are also related to the classical theory of
Fermat’s last theorem; see, e.g., [23].

We are now ready to deal with the exceptional cases in Lemma 3.1.

Theorem 5.1. Let p be an odd prime.
(1) Let a+ b be odd, and let 2m− 1 be the least positive remainder of a+ b modulo
p− 1. If 2 ≤ m < p−1

2 , then

(5.5) v0
a,b(p) ≡ 2b+1pa+b

1− 22−2m

2m− 1
Bp+1−2m (mod pa+b+1).
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(2) If a+ b ≡ 1 (mod p− 1), then

(5.6) v0
a,b(p) ≡ 2b+1pa+bqp(2) (mod pa+b+1).

(3) If p− 1 | a+ b, then

(5.7) v0
a,b(p) ≡ −2bpa+b (mod pa+b+1).

Proof. In all three cases we use (3.6). Then (5.2) and (5.3) immediately give (5.5)
and (5.6), respectively, if we use the fact that by Fermat’s little theorem we have
k−(a+b) ≡ k−(2m−1) (mod p).

If p − 1 | a + b, then a + b is even and ka+b ≡ 1 (mod p) for all 1 ≤ k ≤ p − 1,
so the sum in (3.6) is congruent to p− 1 ≡ −1 (mod p), which gives (5.7). �

We restate now the most common case, namely (5.5), for small values of a+ b.

Corollary 5.1. Let p ≥ 7 be a prime and a+ b odd with 3 ≤ a+ b ≤ p− 4. Then

(5.8) v0
a,b(p) ≡ pa+b

2b+1 − 22−a

a+ b
Bp−a−b (mod pa+b+1).

Examples.
(1) From (5.8) we immediately get, for p ≥ 7,

v0
2,1(p) ≡ p3Bp−3 (mod p4), v0

1,2(p) ≡ 2p3Bp−3 (mod p4).

(2) Let a = b = 1 and p = 3. Then we can easily compute

v0
1,1(3) = 63 ≡ −18 = −2 · 32 (mod 27),

which is consistent with (5.7).

It is important for our purposes to note that the denominators of the Bernoulli
numbers are completely determined by the von Staudt-Clausen theorem (see, e.g.,
[28, p. 56]), while the divisibility properties of the numerators are very difficult
to determine and have deep connections with, among other things, the theory of
cyclotomic fields and the classical theory of Fermat’s last theorem; see [23] or [28].
In this connection, an odd prime p is called irregular if p divides the numerator
of one or more of B2, B4, . . . , Bp−3; otherwise p is called regular . If p | B2k with
2k ≤ p − 3, then (p, 2k) is called an irregular pair . The first few irregular primes
are 37, 59, 67, 101, 103, 131, 149, 157; these were already found in the 1840s
by Kummer. All irregular pairs for p < 12 · 106 have been determined; see [3],
[4]. K. L. Jensen proved in 1915 that there are infinitely many irregular primes.
However, it is not known whether there are infinitely many regular primes, although
there are strong numerical evidence and heuristic arguments to support such a
conjecture; see [23, pp. 106 ff.].

With the above terminology it is clear that Corollary 5.1 implies the following.

Corollary 5.2. Let p ≥ 7 be a prime and a+ b odd with 3 ≤ a+ b ≤ p− 4. Then
pa+b always divides v0

a,b(p), while pa+b+1 divides v0
a,b(p) if and only if (p, p− a− b)

is an irregular pair or p divides 2a+b−1 − 1.

Examples.
(3) We can find in tables (e.g., [28, p. 410]) that (37, 32) is an irregular pair.

Hence we have 376 | v0
a,b(37) for all nonnegative a, b with a+ b = 5. Similarly, the

pair (59, 44) is the next irregular pair which means that 5916 | v0
a,b(59) whenever

a+ b = 15.
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(4) The only known primes p that divide the numerator of Bp−3 are p = 16 843
and p = 2 124 679; see [3] (no others were found in [4]). Hence by Example (1) we
have p4 | v0

2,1(p) and p4 | v0
1,2(p) for these primes.

(5) There is a connection to both Fermat and Mersenne numbers (and primes).
Since a+ b is odd, we can factor

(5.9) 2a+b−1 =
(

2
a+b−1

2 + 1
)(

2
a+b−1

2 − 1
)
.

This means that if the Fermat number Fn = 22n

+ 1 is a Fermat prime p, then for
all a, b with a + b = 2n+1 + 1 we have that pa+b+1 divides v0

a,b(p). For instance,
since F3 = 257 is prime, this shows that 25718 | v0

a,b(257) whenever a+ b = 17. It is
also clear that any factor of a (composite) Fermat number has a similar divisibility
property. The factorization (5.9) shows that analogous divisibility properties also
hold for Mersenne numbers Mq := 2q−1 (q prime), both when they are prime, and
for factors of composite Mq.

6. Connections with Bernoulli numbers: the case ε = 1

Our next improvement to Lemma 3.1 deals with the case ε = 1. The congruence
(3.4) gives rise to the question as to the behavior of vεa,b(p) modulo pa+b+2. Where
previously summation formulas modulo p were sufficient, we now need analogous
congruences modulo p2. The following lemma is closely related to congruences of
Glaisher, as quoted and proved in [17].

Lemma 6.1. Let p ≥ 5 be a prime and 2 ≤ 2m ≤ p− 3. Then

(6.1)
p−1∑
k=1

1
k2m−1

≡ p2m(1− 2m)
1 + 2m

Bp−1−2m (mod p3),

and

(6.2)
p−1∑
k=1

(−1)k

k2m
≡ p 2m

1 + 2m
(
1− 2−2m

)
Bp−1−2m (mod p2),

Proof. The congruence (6.1) can be found in [17, p. 353]. To prove (6.2), we first
note that

(6.3)
p−1∑
k=1

(−1)k

k2m
= 21−2m

p−1
2∑

k=1

1
k2m

−
p−1∑
k=1

1
k2m

.

We use the congruence

(6.4) k−2m ≡ 2kp−1−2m − k2p−2−2m (mod p2)

(see, e.g., [17, p. 353]; for generalizations and further applications, see [7]), which
allows us to use known congruences. First, congruence (18) in [17, p. 354] gives

p−1
2∑

k=1

kp−1−2m ≡ p
(
1− 2p−2−2m

) Bp−1−2m

2p−1−2m
(mod p2).



DIVISIBILITY PROPERTIES OF A CLASS OF BINOMIAL SUMS 13

This congruence is actually valid modulo p3, but if we take it only modulo p2 then
the right-hand side simplifies since 2p−1 ≡ 1 (mod p). Thus,

(6.5)

p−1
2∑

k=1

kp−1−2m ≡ p

2
(
22m+1 − 1

)
Bp−1−2m (mod p2).

Next, the same congruence (18) in [17] gives

(6.6)

p−1
2∑

k=1

k2p−2−2m ≡ p

2
(
22m+1 − 1

)
B2p−2−2m (mod p2).

We now use the well-known Kummer congruence which in its most basic form is

Bν+p−1

ν + p− 1
≡ Bν

ν
(mod p), ν 6≡ 0 (mod p− 1);

see, e.g., [17, p. 355], or for generalizations and a proof, see [28, p. 61]. This,
combined with (6.6), gives

(6.7)

p−1
2∑

k=1

k2p−2−2m ≡ p

2
(
22m+1 − 1

) 2m+ 2
2m+ 1

Bp−1−2m (mod p2).

Finally, we use another congruence form [17, p. 353], namely
p−1∑
k=1

1
k2m

≡ p 2m
2m+ 1

Bp−1−2m (mod p2).

This, along with (6.7), (6.5), and (6.4) substituted into (6.3) immediately gives
(6.2). �

We also need the following evaluation of a certain double sum modulo p. It is of
interest in its own right; we actually show more than is required.

Lemma 6.2. Let α, β ∈ {0, 1}, and let m,n be integers with 1 ≤ m,n ≤ p − 2,
m+ n 6= p− 1, and m+ n ≡ α+ β (mod 2). Let

(6.8) S :=
p−1∑
k=1

(−1)βk

kn

k−1∑
j=1

(−1)αj

jm
.

Then S has the following values modulo p: (a) If α+ β = 1 (and thus, m+n odd),
then

(6.9) S =
1

n+m

(
1− 21−n−m)Bp−n−m (mod p).

(b) If α = β = 1 and both m and n are odd, then

(6.10) S ≡ 2
nm

(
1− 21−m) (1− 21−n)Bp−mBp−n (mod p),

provided that m 6= 1 and n 6= 1. If m = 1 then the term 2
m

(
1− 21−m)Bp−m must

be replaced by 2qp(2); similarly for n.
(c) In all other cases we have

(6.11) S ≡ 0 (mod p).
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Proof. We begin by rewriting the double sum S in (6.8) as follows:

S =
∑

1≤j<k≤p−1

(−1)βk+αj

knjm

≡ (−1)n+m+β+α
∑

1≤j<k≤p−1

(−1)β(p−k)+α(p−j)

(p− k)n(p− j)m
(mod p)

= (−1)n+m+β+α
∑

1≤k<j≤p−1

(−1)βk+αj

knjm
.

If we denote this last sum by S, then we have S ≡ S (mod p) since n+m+ β + α
is even. Hence

(6.12) 2S ≡ S + S =

(
p−1∑
k=1

(−1)βk

kn

)p−1∑
j=1

(−1)αj

jm

− p−1∑
k=1

(−1)(β+α)k

kn+m
(mod p).

We now distinguish between a few cases:
(1) If β = 0 or α = 0 then by (3.7) one of the sums in parentheses in (6.12)

vanishes modulo p. If α = β = 0, the last sum in (6.12) also vanishes, and we have
S ≡ 0 (mod p). If one of α, β is 1 then n + m must be odd, and the last sum in
(6.12) is evaluated with the help of (5.2), which immediately gives (6.9).

(2) If α = β = 1, then the last sum in (6.12) vanishes modulo p, once again
by (3.7). We know that n and m must either be both even or both odd. In the
former case the other two sums in (6.12) vanish by (3.8), and thus S ≡ 0 (mod p).
If both n and m are odd, then (5.2) gives (6.10), and (5.3) accounts for the remark
following (6.10).

All cases are now covered, and thus the proof is complete. �

Remarks.
(1) Lemma 6.2 could be extended to a wider range of n and m by using Fermat’s

little theorem, as we did before.
(2) It is worth writing Lemma 6.2(b) explicitly in the case m = n = 1:

p−1∑
k=1

(−1)k

k

k−1∑
j=1

(−1)j

j
≡ 2qp(2)2 (mod p).

It is interesting to compare this with (5.3). Arguments similar to the above proof,
using the results of this lemma, show that the corresponding triple sum avaluates
to −4

3 qp(2)3 − 1
6Bp−3 (mod p) for p ≥ 5.

Theorem 6.1. Let p ≥ 5 be a prime.
(a) If a+ b is even and 2 ≤ a+ b ≤ p− 3, then

(6.13) v1
a,b(p) ≡ −pa+b+1 b2b

a+ b+ 1
(
1− 2−a−b

)
Bp−1−a−b (mod pa+b+2).

(b) If a+ b is odd and 1 ≤ a+ b ≤ p− 2, then

(6.14) v1
a,b(p) ≡ 0 (mod pa+b+2).
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Proof. The outline of the proof is like that of Lemma 3.1, but here we need to find
expressions for the binomial coefficients modulo p3. From the first line of (3.5) we
obtain (

p

k

)
≡ p

k!

(−1)k−1(k − 1)! + p(−1)k−2(k − 1)!
k−1∑
j=1

1
j

 (mod p3)

= p
(−1)k−1

k

1− p
k−1∑
j=1

1
j

 ,

and similarly (
2p
k

)
≡ 2p

(−1)k−1

k

1− 2p
k−1∑
j=1

1
j

 (mod p3).

These congruences, together with (3.3), give

(6.15) vεa,b ≡ (−1)a+b2bpa+b [S1 − p(a+ 2b)S2] (mod pa+b+2),

where

S1 :=
p−1∑
k=1

(−1)(ε+a+b)k

ka+b
, S2 :=

p−1∑
k=1

(−1)(ε+a+b)k

ka+b

k−1∑
j=1

1
j
.

We note that (6.15) is valid for ε ∈ {0, 1}; however, Lemma 6.2 is applicable only
when ε = 1. First, assume that a + b is even and ε = 1. In this case (6.2), with
2m = a+ b, gives

S1 ≡ p
a+ b

a+ b+ 1
(
1− 2−a−b

)
Bp−1−a−b (mod p2),

while from (6.9) with n = a+ b and m = 1 we get

S2 ≡
1

a+ b+ 1
(
1− 2−a−b

)
Bp−1−a−b (mod p).

These last two congruences, substituted into (6.15), give (6.13).
Next, if a+ b is odd and ε = 1 then by (6.1) we have S1 ≡ 0 (mod p2). Further-

more, since α + β = 0 and n+m = a+ b+ 1 is even, we have S2 ≡ 0 (mod p) by
(6.11). This, with (6.15), gives (6.14). �

Remark. The fact that b is a factor of the right-hand side of (6.13) is consistent
with the fact that, by symmetry of the sum, v1

a,0(n) = 0 for all a ≥ 0 and all odd
n; see also (2.4).

In analogy to Corollary 5.2, the congruence (6.13) immediately implies the fol-
lowing.

Corollary 6.1. Let p ≥ 5 be a prime and a + b even with 2 ≤ a + b ≤ p − 3
and b ≥ 1. Then pa+b+1 divides v1

a,b(p), and pa+b+2 divides v1
a,b(p) if and only if

(p, p− 1− a− b) is an irregular pair or p divides 2a+b − 1.

Examples.
(1) Theorem 6.1 with a = b = 1 gives

v1
1,1(p) ≡ −1

2
p3Bp−3 (mod p4),
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and we have p4 | v1
1,1(p) for p = 16 843 and p = 2 124 679; see Example 4 in

Section 4.
(2) Similarly, (6.13) gives

v1
1,3(p) ≡ −9

2
p5Bp−5 (mod p6),

and 376 | v1
1,3(37) since (37, 32) is an irregular pair.

7. Divisibility by primes in intervals

In addition to the Wolstenholme-type congruences and divisibility properties of
the shortened sums vεa,b(n), we noticed that the “full sums” uεa,b(n) themselves
display some striking divisibility properties. For instance, in the special case a = 0
computations indicated that 1

2

(
2n
n

)
divides u1

0,b(n) for b ≥ 1, consistent with (2.11)
– (2.13). This had already been proved by Calkin [5] who showed that

(
2n
n

)
divides

u1
a,0(2n) for all positive a and n; by (2.8) these two statements are equivalent.

For non-alternating sums Calkin [5] proved a similar result which, however, can-
not be phrased in terms of binomial coefficients.

Theorem 7.1 (Calkin). Let m and n be positive integers. If p is a prime in the
interval

(7.1)
n

m
< p <

n+ 1
m

+
n+ 1−m
m(2ma− 1)

,

then p | u0
2a,0(n).

In this section we shall extend Calkin’s results to the general case of the sum
uεa,b(n), with the only restriction that a+ b ≡ ε (mod 2).

Theorem 7.2. Let a ≥ 1, b ≥ 0, and ε ∈ {0, 1} be given, such that a + b ≡ ε
(mod 2). For any positive integers m and n, if p is a prime in the interval

(7.2)
n

m
< p < n

a+ 2b
m(a+ 2b)− 1

+
a+ b− 1

m(a+ 2b)− 1
,

then p | uεa,b(n).

Proof. We use the main ideas of the proof of Lemma 6 in [5]. Let mp = n + r,
where r > 0. Then we have(

n

k

)
=
(
mp− r
k

)
=

(mp− r)(mp− r − 1) . . . (mp− r − k + 1)
k!

(7.3)

≡ (−r)(−r − 1) . . . (−r − k + 1)
k!

= (−1)k
(k + 1)(r−1)

(r − 1)!
(mod p),

where we have used the rising factorial (or Pochhammer symbol) x(0) = 1 and
x(r) = x(x+ 1) . . . (x+ r − 1). Similarly,

(7.4)
(

2n
k

)
≡ (−1)k

(k + 1)(2r−1)

(2r − 1)!
(mod p).

We substitute (7.3) and (7.4) into (1.3). Since a+ b+ ε is even by assumption, we
always have the non-alternating sum
(7.5)

uεa,b(n) ≡ 1
(r − 1)!a(2r − 1)!b

mp−r∑
k=0

(
(k + 1)(r−1)

)a ((k + 1)(2r−1)

)b (mod p).
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Since the polynomials x(0), x(1), . . . , x(d) form an integer basis for the space of all
integer polynomials of degree at most d, there exist integers c0, c1, . . . , cd, where
d := (r − 1)(a− 1) + (2r − 1)b, such that

(7.6)
(
(k + 1)(r−1)

)a−1 ((k + 1)(2r−1)

)b =
d∑
j=0

cj(k + r)(j).

Since

(k + 1)(r−1)(k + r)(j) = (k + 1)(k + 2) · · · (k + r + j − 1) = (k + 1)(r+j−1),

we get with (7.5) and (7.6), after changing the order of summation,

(7.7) uεa,b(n) ≡ 1
(r − 1)!a(2r − 1)!b

d∑
j=0

cj

mp−r∑
k=0

(k + 1)(r+j−1) (mod p).

Another main ingredient in this proof is the fact that the inner sum in (7.7) can be
evaluated in closed form if we rewrite it as

(r + j − 1)!
mp−r∑
k=0

(
k + r + j − 1

k

)
= (r + j − 1)!

(
mp+ j

mp− r

)
=

(mp+ j)(mp+ j − 1) · · · (mp− r + 1)
r + j

,

where we have used a known combinatorial identity that can be found, e.g., in [10,
eq. (1.49)]. With (7.7) we therefore get

uεa,b(n) ≡ 1
(r − 1)!a(2r − 1)!b

(7.8)

×
d∑
j=0

cj
(mp+ j)(mp+ j − 1) · · · (mp− r + 1)

r + j
(mod p).

Now, if we assume that r + d < p and (if b ≥ 1) 2r − 1 < p, then p - (r − 1)!,
p - (2r − 1)!, and p - r + j for any j, 0 ≤ j ≤ d, while clearly the numerator of
each summand in (7.8) is divisible by p, and thus p | uεa,b(n), as required. We now
rewrite the first assumption as

r + d = r(a+ 2b)− (a+ b) + 1 = (mp− n)(a+ 2b)− (a+ b) + 1

= mp(a+ 2b)− n(a+ 2b)− (a+ b) + 1 < p.

This holds if and only if

p
(
m(a+ 2b)− 1

)
< n(a+ 2b) + a+ b− 1,

which in turn is equivalent to the right-hand inequality in (7.2), while the left-hand
inequality is the same as our initial assumption mp = n+ r.

Finally, we need to verify that 2r − 1 < p when b ≥ 1. But this follows from
r + d < p if we can show that r − 1 ≤ d, i.e., r − 1 ≤ (r − 1)(a − 1) + (2r − 1)b,
which is certainly true since a ≥ 1 and r ≥ 1. This completes the proof. �

Remarks.
(1) If we set b = 0 and replace a by 2a, it is easy to see that the inequalities

(7.2) reduce to (7.1).
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(2) The lengths of the intervals of primes given by (7.2) become clearer if we
rewrite the inequalities as follows:

n

m
< p <

n

m

(
1 +

1
m(a+ 2b)− 1

)
+

a+ b− 1
m(a+ 2b)− 1

,

The largest interval and, for a > 1, the one containing the largest “determined”
primes, occurs when m = 1:

n < p < n

(
1 +

1
a+ 2b− 1

)
+

a+ b− 1
a+ 2b− 1

.

Our next result shows that the case a = 1 is special in that in addition to the
intervals of Theorem 7.2 there is another interval of primes starting at 2n.

Theorem 7.3. Let b ≥ 1 and ε ∈ {0, 1} be such that b 6≡ ε (mod 2), and n ≥ 1. If
p is a prime in the interval

(7.9) 2n < p < n

(
2 +

1
b

)
+ 1,

then p | uε1,b(n).

Proof. Let p = 2n+ r, r > 0. As in (7.3) we have

(7.10)
(

2n
k

)
=
(
p− r
k

)
= (−1)k

(k + 1)(r−1)

(r − 1)!
(mod p).

Since ε+ b is odd, with (1.3) we get

uε1,b(n) ≡ 1
(r − 1)!b

n∑
k=0

(−1)k
(
n

k

)(
(k + 1)(r−1)

)b (mod p).

Just as in (7.6) and (7.7) there are integers c0, c1, . . . , cb(r−1) such that

uε1,b(n) ≡ 1
(r − 1)!b

n∑
k=0

(−1)k
(
n

k

) b(r−1)∑
j=0

cj(k + r)(j) (mod p)

=
1

(r − 1)!b

b(r−1)∑
j=0

cjj!
n∑
k=0

(−1)k
(
n

k

)(
k + r + j − 1
k + r − 1

)

=
1

(r − 1)!b

b(r−1)∑
j=0

cjj!(−1)n
(
p− 2n+ j − 1
p− n− 1

)
.

Here we have used a binomial identity that can be found, e.g., in [10, eq. (3.48)].
The binomial coefficient in the last sum is obviously 0 whenever j < n, so the whole
sum vanishes when b(r − 1) < n. With r = p− 2n we see that this is equivalent to
bp < n+ 2nb+ b, and thus uε1,b(n) ≡ 0 (mod p) when (7.9) holds. This completes
the proof. �

Remark. Theorems 7.2 and 7.3 are best possible in the sense that when a+ b 6≡ ε
(mod 2) and a, b ≥ 1, then uεa,b(n) is divisible by few small primes and is sometimes
a prime itself. Also, in the case a+ b ≡ ε (mod 2) there are few small primes other
than the ones in the intervals (7.2) and (7.9) that divide uεa,b(n).
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8. Further generalizations

An obvious generalization of the sums (1.3) would be

(8.1) uεa,b,c(n) :=
n∑
k=0

(−1)εk
(
n

k

)a(2n
k

)b(3n
k

)c
,

or even

(8.2) uεA(n) :=
n∑
k=0

(−1)εk
(
n

k

)a1
(

2n
k

)a2

· · ·
(
rn

k

)ar

,

where A := (a1, a2, . . . , ar). The only closed forms we could find, other than those
in Section 2, occur when A = (1, 0, . . . , 0, 1). In this case the Vandermonde convo-
lution (1.1) (with x = rn and y = n) gives

u0
A(n) =

n∑
k=0

(
n

k

)(
rn

k

)
=
(

(r + 1)n
n

)
.

Of course this is a direct generalization of (2.3).
Calculations with (8.1) show that we can expect results similar to those ob-

tained in Sections 3–7. This is also clear from the proofs; especially the proofs of
Lemma 3.1, Theorem 6.1, and Theorem 7.2 could easily be adapted to deal with
the more general sums (8.2).
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