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Summary The onset of COVID-19 in the spring of 2020 disrupted academic schedules for many colleges,
including course registration for the fall of 2020. We solve the problem of salvaging the majority of an existing
semester course registration when separating the semester into two terms. The problem was solved using integer
programming.

Introduction

In this article we discuss an optimization problem that resulted from altering an aca-
demic calendar in response to the COVID-19 pandemic. Specifically, we address the
problem of partitioning a fully complete semester-length registration into two half-
length terms while maximizing the number of individual student-course registrations
and enforcing faculty teaching constraints. While timetabling and scheduling prob-
lems have been extensively applied to higher education, those techniques are typically
part of a planning process and either ignore student preferences or focus on students
taking prescribed sets of courses. In this problem, students have already signed up for
a wide range of course combinations.

In March 2020, Grinnell College was among the first schools to decide to transition
to remote teaching and learning for the remainder of the year [1, 2]. Among the first
activities scheduled for April was the annual registration for the fall semester. With
the future uncertain, the College, like many around the world, moved forward with its
traditional registration, albeit remotely and online. Unlike a priority registration com-
mon to most colleges, Grinnell College utilizes an open registration system where all
students have equal priority to all courses and course enrollments caps are initially
ignored. The open registration is followed by a cut and balance period after which
some students must replace any lost courses. Combined with active, individual advis-
ing for all students, the total communal work for students, faculty, and administration
is substantial. In the spring of 2020, this communal work was intensified by the need
to complete the work remotely.

The ongoing difficulties presented by the pandemic forced most colleges to at least
consider alternative versions for their fall 2020 semester [3, 4]. Grinnell College, see-
ing a continuing trend of increased COVID-19 spread in the surrounding region, de-
veloped multiple strategies to have students back on campus. Ultimately, prioritizing
the public health benefits and flexibility associated with bringing subgroups of the
student population to campus, the College made a choice to split the usual 15 week
semester into two 7.5 week terms. Many colleges made similar decisions regarding
their semester schedule [5, 6, 7], but nearly all simply canceled their registration and
started anew. In order to preserve much of the total communal work from the spring,
Grinnell College decided to create their split semester schedule from the completed
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registration. We set upon the task of assigning the courses to the terms in a way that
would retain the greatest portion of the completed registration.

In an idealized setting, the full problem of assigning the courses to time slots over
two terms could be formulated as a single constrained optimization problem known as
timetabling [8]. In this real world setting, human factors suggested that the problem be
solved in phases. For example, the administration wanted to allow faculty to see which
courses would be assigned to each term and allow them to make changes. There were
many additional factors, such as creating a new time schedule for courses, bringing
students to campus in cohorts, students working remotely around the world, changing
guidance from public health organizations, and the evolving status of the virus in the
community. With all of these factors at play, we accomplished the task of splitting
the semester into two half-length terms by modeling the problem as a two-phase op-
timization problem consisting of a penalized set partitioning [9] followed by a pair of
timetabling problems [8].

Phase I: Semester Partitioning

The Problem The three main objects relevant to the problem are the sets of courses,
C, returning students registered for the courses,S, and the faculty teaching the courses,
F . We represent the size of these sets as c = |C|, s = |S|, and f = |F |, to indicate
the number of courses, students, and teaching faculty, respectively. Throughout this
discussion, we use the term courses to indicate every distinct section offered in the
semester. Furthermore, a registered seat is an individual student registered for a spe-
cific course. In order to salvage the total communal work involved in the registration
process and maintain continuity for the student body, the problem at hand is to as-
sign each course to one of two terms and to do so in a way that preserves the greatest
number of registered seats while satisfying constraints imposed by both students and
faculty.

The assignment of each course into the two terms is a set partitioning prob-
lem [9, 10, 11] asking us to find two disjoint subsets of C whose union is all
of C. In other words, the courses needed to be assigned to two terms we dub
T 1 = {courses assigned to term 1} and T 2 = {courses assigned to term 2} where

C = T 1 ∪ T 2 and T 1 ∩ T 2 = ∅. (1)

The registration can be succinctly described in the language of matrices and vectors.
For this assignment problem, we utilize two assignment vectors x, y which indicate the
term to which each course, Ci for i = 1, 2, . . . , c, is assigned:

x(i) =

{
1 Ci ∈ T 1

0 Ci /∈ T 1

, y(i) =

{
1 Ci ∈ T 2

0 Ci /∈ T 2

.

With these assignment vectors, and the binary nature of the assignment, we can restate
the disjoint union (1) as the desire to find x and y in {0, 1}c such that

x+ y = 1c, (2)

where 1k is the vector of length k containing all ones.
A student enrollment matrix, S ∈ {0, 1}s×c, indicates that student i is enrolled in

course j when Sij = 1; otherwise Sij = 0. Students typically take up to four regular∗

∗The typical course at Grinnell College is four or five credits. While the College offers various one and two
credit courses, we only consider four and five credit courses in the partitioning problem.
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courses in a single semester. Thus, in the split, half-length terms, where weekly content
and workload per course are doubled, a full academic load would be up to two regular
courses while taking three courses in a single term is not allowed. The registration of
student i, represented by the row Si, and the partitioning defined by x and y should
combine to assign at most two courses of student i to each term. In other words, for
each i = 1, 2, . . . , s, we want∑

j:Cj∈T 1

Sij =
c∑

j=1

Sij · x(j) = 〈Si, x〉 ≤ 2 and

∑
j:Cj∈T 2

Sij =
c∑

j=1

Sij · y(j) = 〈Si, y〉 ≤ 2.

Interpreting inequalities between vectors as component-wise inequalities, the full set
of student constraints is

Sx ≤ 2 · 1s,

Sy ≤ 2 · 1s.
(3)

Similarly, a faculty teaching matrix, F ∈ {0, 1}f×c indicates faculty member i is
assigned to teach course j when Fij = 1 with Fij = 0 otherwise. Faculty teach no
more than three courses in a normal semester, and, thus, we may divide the teaching
faculty into three sets

Fk = {faculty teaching k courses}, for k = 1, 2, 3

with sizes fi = |F i|. Then we have F = F1 ∪F2 ∪F3 and f = f1 + f2 + f3.
Since we have partitioned the faculty set, we introduce two sub-matrices from the
matrix F , namely

F2 ∈ {0, 1}f2×c and F3 ∈ {0, 1}f3×c

which consist of the rows of F corresponding to each subset of faculty. Faculty and
administration agreed that individual teaching assignments should be spread evenly
across the terms. Therefore, the faculty in F2 should teach their courses one per term
while the faculty in F3 should teach two courses in a single term and one in the other.
The group of faculty in F1 do not impose a constraint, so all faculty constraints can
be written as

F2x = 1f2 ,

F2y = 1f2 ,

1f3 ≤ F3x ≤ 2 · 1f3 ,

1f3 ≤ F3y ≤ 2 · 1f3 .

(4)

A final set of constraints for this problem is a selection of roughly 29% of courses
that, for a variety of reasons imposed by the College, faculty, or administration, must
appear in a specific term. For example, all incoming, first year students have the Col-
lege’s First Year Seminar as one of their courses in T 1. Since first year students are
not included in S, and therefore these Seminars will not create student conflicts, the
courses must be included in our problem to properly account for the faculty constraints
(4). In terms of our assignment vectors, if Ci is a course that must be offered in T 1,
we simply require x(i) = 1. These preassigned variables could, in fact, be removed
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from the problem. For simplicity in identifying these constraints, and because well de-
veloped software implementations automatically perform the problem reduction, we
simply list the preassigned courses as the equality constraints

P1x = 1p1 ,

P2y = 1p2 ,
(5)

where P1 and P2 are the appropriate submatrices of the identity matrix to preassign the
courses in the designated terms, and p1, p2 denote the number of courses preassigned
to each term.

The simplest statement of our ideal problem to separate the registration into two
terms is given by

Find x, y ∈ {0, 1}c subject to

x+ y = 1c,

P1x = 1p1 ,

P2y = 1p2 ,

Sx ≤ 2 · 1s,

Sy ≤ 2 · 1s,

F2x = 1f2 ,

F2y = 1f2 ,

1f3 ≤ F3x ≤ 2 · 1f3 ,

1f3 ≤ F3y ≤ 2 · 1f3 .

(6)

With the large number of constraints on this problem and the wide-ranging course
combinations taken by students, we anticipated it would be unlikely to find a partition
of the courses so that no constraint was violated. Indeed, (6) has no solution. Thus, we
must relax the constraints by introducing penalties for violating the constraints. We
can use these penalties to formulate a cost function that will be used to measure how
close a partitioning comes to approximating this idealized setting.

Initial Heuristic Partitioning To quickly provide the administration with informa-
tion for the decision process, preliminary work on the problem was intended to sim-
ply identify how much of the registration could possibly be salvaged when switching
from a semester to two terms. A preliminary cost function was introduced to count the
seats lost by a particular partitioning (i.e. violations of (3)). We developed a heuristic
algorithm to find a feasible solution to the problem to obtain a lower bound on the
percentage of registered seats saved. This algorithm was based on the intuitive meth-
ods that an individual would likely employ to solve the same problem with a smaller
number of variables. The heuristic algorithm, similar to an implicit enumeration [9],
completes three distinct stages. First, we proceed through the list of courses in random
order, placing them into a term if no conflict arises for any constraint, or setting them
aside if the course violates a constraint when assigned to either term. After passing
through the list in this way, the courses set aside are forced into a term based on which
one creates fewer conflicts. This process often created violations of the faculty teach-
ing constraints which were then corrected even though it increased the total number of
registered seats lost.

The full heuristic algorithm runs a few thousand times in a matter of seconds and
selects the partitioning with the fewest registered seats lost (thereby also providing
an initial feasible solution). This heuristic typically returns solutions that save ap-
proximately 87% of registered seats. The outcome from even the heuristic model
exceeded expectations of the administration and academic planning committee, par-
ticularly when informed that further modeling and optimization would improve the
results. The recognition that more than 87% of registered seats would be saved while
gaining the proposed public health advantages of switching to the 7.5 week terms was
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a significant factor in finalizing the decision to alter the calendar for the 2020-2021
academic year.

The Integer Program As mentioned above and as feared by most constituencies
in the planning process, the partitioning of the courses into two sets with no student
enrolled in more than two classes per term is already infeasible. The total communal
work required to reschedule courses and start the registration process from scratch
motivated our efforts to transform the problem to a minimization problem. The equality
constraints assigning each course to one term (2) and pre-designating term assignment
for a small set of courses (5) are non-negotiable and must remain intact. Fortunately,
the remaining constraints can be relaxed via the introduction of a cost function on
associated violations, and the problem formulated as an integer program (IP) [10].

First, recall that a registered seat is an instance of a single student registered for a
particular course; each registered seat lost will require the communal work of finding
and enrolling that student in a new course. We reframe the problem as a minimization
of a cost function and replace the strict requirements from the previous sections with
penalties. The cost function should increase whenever a partition causes a student to
have more than two registered seats in a single term. Therefore, we introduce auxiliary
cost variables associated to each student; let λx and λy be vectors representing the
number of seats lost for each student in T 1 and T 2, respectively. Thus we replace the
student constraints (3) with the following auxiliary constraints:

Sx− λx ≤ 2 · 1s,

Sy − λy ≤ 2 · 1s.
(7)

The sum of the terms in λx and λy will represent the total number of registered
seats lost. Since no student is registered for more than four courses, the penalties asso-
ciated with student i naturally satisfy the bounds λx(i) + λy(i) ≤ 2. For the sake of
equity, we could have introduced an additional fairness constraint, λx(i) + λy(i) ≤ 1,
to ensure that no particular students bore the brunt of the cost. Ultimately, we decided
that a manual course audit for each student forced to drop a course, combined with
the relatively small number of students with λx(i) + λy(i) = 2, sufficiently mitigated
against the need for this additional constraint.

Similarly, we replace the faculty constraints with penalized auxiliary constraints,
letting µx, µy ∈ Rf2 indicate individual teaching assignment violations for faculty
in F2 and ωx, ωy ∈ Rf3 indicate such violations over F3. Since x(i) + y(i) = 1
for each course Ci, violations of an upper bound for one constraint involving faculty
teaching 3 courses, the last two lines of (4), force a violation of the lower bound for the
other term; this combination renders the lower bounds unnecessary. Thus the faculty
constraints (4) can be replaced with the auxiliary constraints

F2x− µx ≤ 1f2 ,

F2y − µy ≤ 1f2 ,

F3x− ωx ≤ 2 · 1f3 ,

F3y − ωy ≤ 2 · 1f3 .

(8)

We must determine how important the faculty constraints are when compared to the
lost seats of the student constraints. Based on average class sizes of approximately 13
students we chose penalties of 10 registered seats for violations when teaching two
courses and 20 registered seats when teaching three courses. Since faculty from F3

teach two courses in a single term, it is clearly less of a problem to also permit this for
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faculty in F2 when it will save the registrations for many students. On the other hand,
a violation of teaching assignments for faculty in F3 will likely result in swapping
faculty teaching duties, a potentially disruptive and costly undertaking. For simplicity,
the model makes no effort to link multiple sections of the same course. Instead, any
student violation which could be corrected by switching sections was accomplished in
a manual post processing phase.

We define the objective function as a weighted sum represented by the inner product
of all auxiliary penalty variables

Λ =


λx

λy

µx

µy

ωx

ωy

 ∈ R2(s+f2+f3) and the weights W =

 12s

10 · 12f2

20 · 12f3

 ∈ R2(s+f2+f3).

Then, the objective to be minimized is the weighted penalty

〈Λ,W 〉 =
s∑

i=1

(λx(i) + λy(i)) + 10

f2∑
i=1

(µx(i) + µy(i)) + 20

f3∑
i=1

(ωx(i) + ωy(i)).

Equipped with these reformulations, we represent our partitioning as the following
integer program:

Minimize
Λ∈R2(s+f2+f3)

〈Λ,W 〉 subject to

x ∈ {0, 1}c,
x+ y = 1c,

P1x = 1p1 ,

P2y = 1p2 ,

y, µx, µy, ωx, ωy ≤ 1,

λx, λy ≤ 2,

y, λx, λy, µx, µy, ωx, ωy ≥ 0,

Sx− λx ≤ 2 · 1s,

Sy − λy ≤ 2 · 1s,

F2x− µx ≤ 1f2 ,

F2y − µy ≤ 1f2 ,

F3x− ωx ≤ 2 · 1f3 ,

F3y − ωy ≤ 2 · 1f3 .

(9)

Solving an Integer Program In general, integer programming is NP-complete [12].
For some insight into how the minimizer∗ is found, consider the space in which the
solution exists. A linear constraint defines a hyperplane dividing the ambient space into
two half-spaces with all points satisfying an inequality constraint lying in the same
half-space. Thus, the intersection of all such half-spaces defines the feasible region
containing points which satisfy all the linear constraints. Now, the integer constraints
further restricts the feasible points to those sitting on the integer lattice within this
feasible region. The integer lattice points within the feasible region, the integer feasible
points, contain all optimal solutions to an integer program.

Linear Program Relaxation Without the integer constraints, we have an associated,
standard linear programming problem called the LP relaxation. The LP relaxation can
be solved efficiently, for example by the simplex method. Essentially, the simplex
∗We focus here on minimization to match our problem; the intuition applies analogously to maximization.
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method uses the knowledge that a minimizer of the linear objective function must lie
on the boundary of the feasible region. Considering this fact iteratively, we recognize
that an optimal solution will exist on one of the vertices of the polytope defined by the
constraints’ hyperplanes. These vertices of the feasible region are known as Corner
Point Feasible (CPF) solutions. The simplex method moves from one CPF solution to
the next by traveling along the edge which most advantageously impacts the objective
function. When it arrives at a CPF solution whose neighbors all have inferior objective
function values, the algorithm selects that CPF solution as a local minimum. The linear
nature of the problem assures us this local optimum is the global optimal solution to
the linear program.

Bounding the Integer Program The fundamental idea for solving an Integer Program
is to ignore the integer constraints and solve the LP relaxation. While rounding the
continuous solution can lead to disastrous outcomes∗, the solution to this relaxation
provides valuable information. First of all, if we are lucky enough to have a solution
exclusively composed of integer values we have solved the IP. Barring this unlikely
event, we do know that the minimizer of this associated relaxation must have an ob-
jective value less than any solution that also satisfies the integer constraints. Thus, we
have a lower bound on the optimal IP objective value. Likewise, by evaluating the ob-
jective function at any integer feasible point, we obtain an upper bound on the optimal
IP objective value.

Cutting Planes When the LP relaxation yields a non-integer solution, a new linear
constraint can be added to the problem. This new constraint, called a cutting plane,
updates the LP relaxation to cut out the non-integer solution from the feasible region
without removing any integer feasible solutions. Gomory [13] showed that adding a
finite number of cutting planes produces a linear program with an integer solution, and
therefore solves the IP. This method, unfortunately, is typically inefficient as the num-
ber of cutting planes may be excessively large. In modern algorithms, cutting planes
are generally used in initial phases of the problem solving process.

Branch-and-Bound The most common approach for solving an integer program is
called branch-and-bound. When we solve the LP relaxation, we establish upper and
lower bounds on the minimum objective value for an integer solution. When the solu-
tion to that relaxation has a non-integer value, e.g. xi ∈ (n, n+ 1), we formulate two
new problems, or branches, which separate the feasible region into two parts. The first
branch includes the new constraint xi ≤ n and the second branch adds the constraint
xi ≥ n + 1. These branches remove a portion of the feasible region but preserve all
integer feasible solutions.

At this point, LP relaxations associated to each branch provide updated information
on the bounds of the optimal objective value for the IP. If the new LP relaxation ob-
jective value is larger than the upper bound on the IP objective value, no point in that
branch can improve upon on the current IP objective value, and the entire branch is
abandoned. Otherwise, with its restricted feasible region, the relaxation for a branch
updates the lower bound on the IP objective value. If the solution to the relaxation
also has non-integer values, the branching process is applied again to create two new
branches.

Branch-and-bound organizes a search of the feasible region and the associated
bounds provide an interval in which the optimal objective value exists. If the fea-
∗It is possible to formulate problems where rounding the relaxation’s solution is as far from optimal as desired

both in terms of the solution and objective value, not to mention the common case where the rounded solution is
not even a feasible point.
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Random Cutting Branches Relaxations Simplex Optimality
Perturb. Planes Created Solved Iterations Gap (%)

A No 2 1,348,205 1,266,138 409,986,094 14.62
B No 4 1,417,327 1,325,648 409,435,633 14.41
C Yes 5 2,380,516 2,242,821 769,773,065 11.97
D Yes 8 2,532,475 2,376,589 778,706,493 12.02

TABLE 1: Computational Data reported by Mosek after a timed termination of 8.5
hours working on (9). Instances A and B did not perturb the objective function.

sible region is bounded, this process will eventually terminate, but the exponential
growth on the number of branches makes it computationally impractical to complete
the search for the optimal solution. Fortunately, the length of interval defined by the
bounds, known as the optimality gap, can be used to decide when to stop. Once our
gap is within some chosen tolerance, we can take our best known objective value and
declare the outcome a near optimal solution.

Random Perturbation An integer program with equal weights for the cost variables is
prone to having a high degree of symmetry [14]. This symmetry often means many so-
lutions exist where trading some small set of components from one solution to another
will not impact the objective function. When a CPF solution has many neighbors with
the same objective function value, the search can get bogged down selecting which di-
rection to travel in search of improving the objective value. While more sophisticated
approaches exist for dealing with symmetry [14], adding positive, random values to all
weights can perturb the objective function [15] and often breaks the symmetry.

Implementation and Results The final data set consisted of f = 197 faculty teach-
ing c = 358 courses comprising 4542 registered seats for s = 1297 distinct students.
Of these faculty, there were f2 = 91 faculty teaching two courses and f3 = 37 teach-
ing three courses. The College designated p1 = 71 courses∗ to be fixed in T 1 with
p2 = 33 courses fixed in T 2. The optimization problems were implemented in Mat-
lab [19] while employing the Mosek Optimization Toolbox for Matlab [16].

We began by running two instances of the algorithm, one with and one without
random perturbation†. The randomization inherent in the heuristic algorithm and the
randomly weighted objective function ensured that we had two distinct integer feasible
solutions when stopping the method after 8 hours. Each of the solutions was then
presented as an initial feasible solution in two more instances of the algorithm, one
with and one without random perturbation. Mosek then worked on each the problem
for an additional 8.5 hours. In Table 1 we see that every instance performed hundreds
of millions of simplex iterations to solve millions of LP relaxations from millions
of branches. In all instances, the chosen integer feasible solution was found in the
first four hours, with the additional work shrinking the optimality gap by solving LP
relaxations in the branch-and-bound process.

Near Optimal Partitions At the culmination of this process, we had four feasible so-
lutions outlined in Table 2. As with most large integer programs, we did not expect
to certify a particular feasible solution as the optimal solution. With the naive heuris-
tic algorithm providing initial feasible solutions preserving 87% of registered seats,
∗The apparent lopsided nature of the number of fixed courses is related to the 31 First Year Seminars preas-

signed to T 1.
†In our implementation, we perturbed the objective with absolute values of samples from Matlab’s normal

pseudorandom number generator, randn.
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# Sections # Sections Seats Students Faculty

T 1 T 2 Saved (%) Unchanged (%) Violations
A 195 163 90.66 69.93 5
B 192 166 90.82 70.62 4
C 192 166 91.00 71.24 6
D 196 162 90.62 70.39 3

TABLE 2: Four Near Optimal Solutions: Number of sections assigned to each term,
percentage of seats saved, percentage of students who do not need to make any
changes to their registration, and number of two course faculty constraints violated.
(No solutions had a three course faculty violation.)

we ran Mosek [16] on the relaxed problem which ignored faculty constraints (8) to
obtain a clear upper bound of salvaging at most 93% of registered seats. With time
constraints and anticipated alterations to the partition from the faculty approval pro-
cess, we decided to accept any solution salvaging 90% of registered seats as a near
optimal solution [17, 18].

We selected Option D despite it having the lowest percentage of seats saved. The
reasoning was twofold. First, the characteristics listed in Table 2 are roughly equiva-
lent for each of the options, except for the faculty constraint violations. In particular,
Option D had the fewest such violations which will either require the faculty to be
reassigned or a course to be moved. Second, each of the faculty violations associated
with Option D would have moved a class from T 1 to T 2 and therefore would fur-
ther balance the offerings. The apparent lopsided nature of the splitting was related to
the College’s First Year Seminar all being pre-assigned to T 1 and having no student
conflicts with any other courses in the registration. Option D provided the best balance
between registered seats saved, percentage of students with intact registrations, balanc-
ing of sections across terms, and minimal faculty constraint violations. Option D was
designated as our preferred solution for the semester partitioning problem (9) saving
more than 90% of registered seats and preserving the entire registration of over 70%
of the student population even after rectifying the three faculty constraint violations.

Manual Post Processing The near optimal solution was translated into what was
deemed the seeded schedule and presented to the faculty. The College, seeking to
maintain the ethos of a faculty controlled curriculum and course schedule, presented
the seeded schedule to departments for their review, revision, and potential faculty re-
assignments. While the overwhelming majority of course sections remained in their
assigned term, various factors compelled some courses to be swapped between terms,
canceled, or moved to the spring. Unfortunately, the relatively small number of manual
changes had a significant impact decreasing the percentage of seats saved to 84.39%.
The required faculty approval of the schedule prevented reformulating the optimization
problem with this new information to improve the final solution. After departmental
changes were finalized, the registrar staff conducted an academic audit to find the most
academically advantageous schedule alterations for the 30% of students for whom the
partition caused a conflict.

The Final Partition The preferred solution, Option D, saved 4116 of the 4542 reg-
istered seats. In addition to the 426 seats lost in finding this near optimal solution,
283 seats were lost in the post processing. The majority of these secondary lost seats
stemmed from moving or canceling courses. At the end of all post-processing, the
changes to the seeded schedule (Option D) combined with balancing, cutting, and
leaves of absence, the conflict-free, split-semester registration retained 3833 of the
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original 4542 registered seats (84.39%). Moreover, less than one third of students had
one of their courses dropped and only 3% of students lost two courses.

Phase II: Assigning Time Slots

As mentioned in the Introduction, an idealized timetabling problem would simply as-
sign all courses to both the term and the time-slot from the outset. In our situation,
the governance process imposed that we solve the problem in two phases as the term
assignments needed approval, and, at the start of the problem, no time slots had been
approved for the accelerated terms. A typical semester course lasts 15 weeks. For the
split semester schedule, the terms are 7.5 weeks, necessitating twice as much meeting
time per week. Thus, the typical College time slots could not be used. Ultimately, seven
time slots listed in Table 3 were chosen to cover three general time blocks of morn-
ing (t1, t2, t3), afternoon (t4, t5, t6), and evening (t7). Both the morning and afternoon
blocks were divided into two 110-minute time slots; a third 230-minute time slot des-
ignated for laboratories spans the full block. The evening block could not reasonably
support two 110-minute time slots, so a single evening time slot was designated with
laboratory courses permitted.

Morning Afternoon Evening
(110 min.) (230 min.) (110 min.) (230 min.) (110 min.) (230 min.)

t1 t3
t4 t6 t7t2 t5

TABLE 3: Time slots: Within each general time slot of morning, afternoon, or evening
were full time period laboratory time slots conflicting with shorter time slots; the morn-
ing and afternoon included two non-conflicting 110 minute time slots.

The Time Slot Problem Again the primary objective is the preservation of regis-
tered seats. To preserve seats, courses must be assigned to time slots with no student
assigned to two courses in the same time slot. To ensure faculty avoid time conflicts,
the problem is also constrained by the faculty. However, the faculty constraints satis-
fied by the near optimal partitioning from Phase I ensured that very few faculty were
teaching more than one course in either T 1 or T 2; thus, the faculty constraint is not
substantial. Finally, since first year students had not yet registered for courses, all sec-
tions of the First Year Seminar were removed∗ from this time slot assignment phase.

This problem must be solved for each term T 1 and T 2, but the problem formu-
lation is identical. We let S̃ denote the student enrollment matrix with columns rep-
resenting only those courses assigned to the relevant term. Similarly, F̃2 is the matrix
of faculty assignments only for those faculty teaching two courses in the current term.
Likewise, we let c̃, s̃, f̃2 represent the number of courses, students, and faculty teach-
ing two courses in the appropriate term. To assign each course to a single time slot, we
start with the problem
∗In a standard academic year, First Year Seminars are all assigned the same protected time slot. In this

splitting, faculty teaching Seminar were allowed to select their time slot after all other courses were given their
designated time slot. This provided a range of time slots for first year students learning online and spread around
the world.
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Find t1, t2, t3, t4, t5, t6, t7 ∈ {0, 1}c̃ subject to

t1 + t2 + t3 + t4 + t5 + t6 + t7 = 1c̃,

S̃(t1 + t3) ≤ 1s̃,

S̃(t2 + t3) ≤ 1s̃,

S̃(t4 + t6) ≤ 1s̃,

S̃(t5 + t6) ≤ 1s̃,

F̃2(t1 + t3) ≤ 1f̃2
,

F̃2(t2 + t3) ≤ 1f̃2
,

F̃2(t4 + t6) ≤ 1f̃2
,

F̃2(t5 + t6) ≤ 1f̃2
.

(10)

Faculty Preference and Laboratory Constraints Faculty were asked to indicate
their preference of morning, afternoon, or evening; alternatively, faculty could indi-
cate a willingness to teach in any time slot or only during the daytime (only morning
or afternoon). No other combinations of preference were submitted. Only courses with
a designated laboratory or studio component were designated for the lab time slots.
Similar to the definition of the pre-assignment matrices in (5), we define five matrices
which preassign a course to a specific category of time slot: mornings M , afternoons
A, evenings E, daytime D, and laboratory L. The number of courses for each des-
ignation, i.e. the number of rows of these matrices, is denoted by the corresponding
lower case letter: m, a, e, d, l.

For example, M is the sub-matrix of the c̃ × c̃ identity matrix obtained by ex-
tracting those rows corresponding to the courses with the morning designation. The
other matrices are defined similarly. Clearly, a course assigned to the morning must
have a 1 in exactly one of the first three vectors, t1, t2, t3. Thus, this morning desig-
nation constraint is simply M(t1 + t2 + t3) = 1m. The following is the full set of
pre-assignment equality constraints for a given term:

M(t1 + t2 + t3) = 1m,

A(t4 + t5 + t6) = 1a,

E(t7) = 1e,

D(t1 + t2 + t3 + t4 + t5 + t6) = 1d,

L(t3 + t6 + t7) = 1l.

(11)

The Optimization Problem This strict time slot problem has no feasible solution
since every assignment results in some student conflicts. To solve the problem and
minimize the loss of registered seats, we formulate the problem as a timetabling prob-
lem [8, 20, 21], which considers student conflicts a soft constraint incurring a penalty.
Due to challenges with teaching remotely and online, faculty preferences were deemed
non-negotiable (a hard constraint) and the faculty preferences were not relaxed. Like-
wise, the courses with a laboratory component must be placed into a laboratory des-
ignated time slot. Additionally, the number of faculty constraints were small enough
that these constraints were left intact. Therefore the time slot problem was formu-
lated as a timetabling problem to minimize the number of seats lost with the auxiliary
cost variables associated only with student conflicts. The four time slot conflicts from
Table 3 were assigned a vector λj containing the number of registered seats lost for
each student. We solve the minimization problem
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Minimize
Λ∈R4s̃

〈Λ,14s̃〉 =
s̃∑

i=1

4∑
j=1

λj(i) subject to

t1, t2, t3, t4, t5, t6 ∈ {0, 1}c̃,
t1 + t2 + t3 + t4 + t5 + t6 + t7 = 1c̃,

M(t1 + t2 + t3) = 1m,

A(t4 + t5 + t6) = 1a,

E(t7) = 1e,

D(t1 + t2 + t3 + t4 + t5 + t6) = 1d,

L(t3 + t6 + t7) = 1l,

t7, λ1, λ2, λ3, λ4 ≥ 0,

S̃(t1 + t3)− λ1 ≤ 1s̃,

S̃(t2 + t3)− λ2 ≤ 1s̃,

S̃(t4 + t6)− λ3 ≤ 1s̃,

S̃(t5 + t6)− λ4 ≤ 1s̃,

F̃2(t1 + t3) ≤ 1f̃2
,

F̃2(t2 + t3) ≤ 1f̃2
,

F̃2(t4 + t6) ≤ 1f̃2
,

F̃2(t5 + t6) ≤ 1f̃2
.
(12)

Implementation and Results The integer program for each term’s time slot assign-
ment problem (12) was both smaller and less constrained than the set partitioning
problem (9) in Phase I. Mosek [16] certified an optimal solution for each term in a
matter of seconds; the simpler problems were more amenable to cutting plane reduc-
tions and combined for roughly half of a million simplex iterations. These solutions
preserved 1758 of 1829 (96.12%) registered seats in T 1 and preserved 1898 of 2004
(94.71%) registered seats in T 2. Thus, the assignment into time slots, even when per-
mitting faculty to select general times of day, only resulted in the loss of 177 additional
seats. Combined with the semester partitioning of Phase I, the near optimal solution
derived from this two-phase, integer program preserved 3656 of 4542 registered seats.

Cutting Branches Relaxations Simplex Time Seats
Planes Created Solved Iterations (sec.) Lost

T 1 21 11,493 8,585 354,513 26.04 71
T 2 34 4,396 3,424 176,680 14.25 106

TABLE 4: Computational Data reported by Mosek on the Time Slot Problem (12). The
optimal solution was found for each problem in less than 30 seconds.

Conclusion

With regional public health measures indicating the potential for significant spread of
COVID-19, Grinnell College joined other colleges in altering their academic calendar
from a traditional semester to two terms of half the length. This change presented
many challenges including how to salvage the significant effort already given to course
registration. By approaching the problem as an optimization problem and formulating
the task as a series of integer programs, the College was able to salvage over 80% of
registered seats, exceeding expectations.
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Academic challenges and uncertainty caused by COVID-19 saw enrollments de-
cline across much of higher education [22, 23]. While the number of students taking a
leave of absence at Grinnell College increased from previous years, the increase was
less dramatic than at many similar institutions. Anecdotal information suggests that
preserving the full academic plan for over two-thirds of the student body, and the ma-
jority of courses for nearly all students, contributed substantially to their decisions to
return for the split-term fall academic period. While priority registration systems at
other institutions enabled them to discard completed registrations and start fresh, it is
possible such a process failed to account for the effort and work of students, faculty,
and staff engaging in two registrations. As the current COVID-19 pandemic is unlikely
to be the last challenge faced by higher education, employing integer programming to
salvage completed registration, as was done here, may improve future responses to
academic disruptions.
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