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1 Introduction

The 3x+1 problem concerns iterates of the function T : Z+ → Z
+ defined as

T (n) =







n/2, n even,

(3n+ 1)/2, n odd.

The (still) open conjecture is that for each n ∈ Z
+ there exists a k such that

T (k)(n) = 1, that is, the kth iterate of n equals one. Despite its simplicity, this

beguiling problem has withstood many challenges, including over 300 related

papers which have barely made a dent into a resolution. A comprehensive

resource [7] contains articles, surveys, and an annotated bibliography.

One of the main challenges of the 3x+1 problem is the apparent lack of

structure of the iterates. While the process is deterministic, broad mixing pat-

terns are witnessed experimentally, which agree with stochastic models for this

problem; see Kontorovich and Lagarias[5]. Lagarias [7, p.21] noted that the

pseudorandomness of the 3x+1 problem make it extremely resistant to analy-

sis. Moreover, he states: “If one could rigorously show a sufficient amount of

mixing is guaranteed to occur, in a controlled number of iterations in terms

of the input size n, then one could settle part of the 3x+1 conjecture, namely

prove the non-existence of divergent trajectories. Here we have the fundamen-

tal difficulty of proving in effect that the iterations actually do have an explicit

pseudo-random property.” The averaging properties reported in this paper offer

evidence towards this goal.
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An intriguing approach to the 3x+1 problem started by Berg and Meinardus[1,

2] uses generating functions

fn(x) =

∞
∑

k=1

T (n)(k)xk.

They develop a formula which connects fn to fn+1 (which we generalize in The-

orem 3.2) and a statement concerning a functional equation which is equivalent

to the 3x+1 problem. If the 3x+1 map behaves as expected, then the two se-

quences {f2n(x)} and {f2n+1(x)} should each converge in coefficient space. The

pseudorandomness of this process suggests that the functions fn or averages

over its coefficients can offer insightful structure. However, the erratic behav-

ior of the orbits of T means the tail of the generating functions is difficult to

analyze.

This paper finds new properties of these generating functions (Section 2)

which leads to new averaging structure concerning the function T (Sections 3

and 4). We work with a broader class of functions Tq,r defined as

Tq,r(n) =







n/2, n even

(qn+ r)/2, n odd

where q and r are odd numbers, and we study the generating functions

fn,q,r(x) =

∞
∑

k=1

T (n)
q,r (k)x

k.

Usually the values of q and r will be generic, so unless special values are

called for, the subscripts will be omitted so that the long calculations will be

less dense.

2 The Generating Functions

Before building and examining the generating functions, a general property of

T will be developed. This requires the auxiliary function O
(n)
q,r (k) defined as

the number of odd terms in the set {k, T
(1)
q,r (k), T

(2)
q,r (k), . . . , T

(n−1)
q,r (k)}. The

first result generalizes a well-known fact for the 3x+1 case; see Terras[8] or

Lagarias[6].
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Theorem 2.1 For fixed odd (q, r) and for all n, k, j ≥ 0 there holds

T (n)
q,r (2nk + j) = qO

(n)
q,r (j)k + T (n)

q,r (j).

Proof: The proof follows by induction on n. The n = 0 case is trivial since

each side equals k + j. Using the inductive hypothesis, one sees that

T (n+1)(2n+1k + j) =







qT (n)(2n+1k+j)+r
2 , , T (n)(2n+1k + j) odd,

T (n)(2n+1k+j)
2 , , T (n)(2n+1k + j) even

=







q(qO
(n)(j)2k+T (n)(j))+r

2 , T (n)(j) odd

qO
(n)(j)2k+T (n)(j)

2 , T (n)(j) even

=







qO
(n)(j)+1k + qT (n)(j)+r

2 , T (n)(j) odd

qO
(n)(j)k + T (n)(j)

2 , T (n)(j) even

= qO
(n+1)(j)k + T (n+1)(j).

✷

Theorem 2.1 yields a straightforward observation.

Theorem 2.2 The functions fn,q,r(x) are rational functions which converge on

the disc |x| < 1. They take the form Pn,q,r(x)/(1 − x2n)2 in which Pn,q,r is a

polynomial of degree 2n+1 − 1 and x divides Pn,q,r(x). This polynomial satisfies

fn,q,r(x) =
1

(1− x2n)2

2n
∑

j=1

qO
(n)
q,r (j)xj +

1

1− x2n

2n
∑

j=1

[

T (n)
q,r (j)− qO

(n)
q,r (j)

]

xj . (1)

Proof:

We have

fn,q,r(x) =

∞
∑

k=1

T (n)(k)xk

=

∞
∑

m=0

2n
∑

j=1

T (n)(2nm+ j)x2nm+j

=

∞
∑

m=0

2n
∑

j=1

(

qO
(n)(j)m+ T (n)(j)

)

x2nm+j
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=
x2n

(1− x2n)2

2n
∑

j=1

qO
(n)(j)xj +

1

1− x2n

2n
∑

j=1

T (n)(j)xj

=
1

(1− x2n)2

2n
∑

j=1

qO
(n)(j)xj +

1

1− x2n

2n
∑

j=1

[

T (n)(j)− qO
(n)(j)

]

xj .

✷

The first four functions for 3x+1 case are

f0,3,1(x) =
x

(1− x)
2 ,

f1,3,1(x) =
x
(

x2 + x+ 2
)

(1− x2)
2 ,

f2,3,1(x) =
x
(

x6 + x5 + 2x4 + x3 + 8x2 + 2x+ 1
)

(1− x4)
2 ,

f3,3,1(x) =
x
(

x14 + x13 + x12 + x11 + 5x10 + 2x9 + 7x8 + x7 + 26x6 + 8x5 + 2x4 + 2x3 + 4x2 + x+ 2
)

(1− x8)
2 .

Theorem 2.2 implies that the poles of fn,q,r are exactly the roots s of s2
n

= 1.

In an attempt to find structure in fn,q,r, a contour integral of fn,q,r around the

curve |x| = 2 (which contains all the poles) was performed. Amazingly, for the

3x+1 problem, numerical integration suggested
∮

|x|=2

fn,3,1(x)dx = 2πi (2)

for all n. To generalize and prove this observation, it is easier to work in

the exterior of the contour. To this end, we establish a result which connects

two different generating functions on two different domains. This paper will

usually only consider the function Tq,r(x), but an extra wrinkle will be helpful.

Let T+,q,r(x) = Tq,r(x), while T−,q,r(x) = T+,q,−r. Studying T+,q,r on the

negative integers is equivalent to studying T−,q,r on the positive integers since

T
(n)
+,q,r(−j) = −T

(n)
−,q,r(j). A related observation is O

(n)
+,q,r(−j) = O

(n)
−,q,r(j). Both

T+,q,r and T−,q,r can be combined in another interesting way.

Theorem 2.3 For each n ∈ Z
+ there holds the equality of rational functions

fn,q,r(x) = fn,q,−r

(

1

x

)

.
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Proof:

fn(x) =

∞
∑

k=1

T
(n)
+ (k)xk

=
x2n

(1− x2n)2

2n
∑

j=1

qO
(n)
+ (j)xj +

1

1− x2n

2n
∑

j=1

T
(n)
+ (j)xj

=
1

(

1− 1
x2n

)2

2n
∑

j=1

qO
(n)
+ (j)xj−2n −

1

1− 1
x2n

2n
∑

j=1

T
(n)
+ (j)xj−2n

=
1

(

1− 1
x2n

)2

2n−1
∑

j=0

qO
(n)
+ (2n−j)x−j −

1

1− 1
x2n

2n−1
∑

j=0

T
(n)
+ (2n − j)x−j

=
1

(

1− 1
x2n

)2

2n−1
∑

j=0

qO
(n)
+ (−j)x−j −

1

1− 1
x2n

2n−1
∑

j=0

(

qO
(n)
+ (−j) + T

(n)
+ (−j)

)

x−j

=
1

x2n
(

1− 1
x2n

)2

2n−1
∑

j=0

qO
(n)
+ (−j)x−j −

1

1− 1
x2n

2n−1
∑

j=0

T
(n)
+ (−j)x−j

=
1

x2n
(

1− 1
x2n

)2

2n
∑

j=1

qO
(n)
+ (−j)x−j −

1

1− 1
x2n

2n
∑

j=1

T
(n)
+ (−j)x−j

=
1

x2n
(

1− 1
x2n

)2

2n
∑

j=1

qO
(n)
−

(j)x−j +
1

1− 1
x2n

2n
∑

j=1

T
(n)
− (j)x−j

=
∞
∑

k=1

T
(n)
− (k)

1

xk
.

✷

Berg and Meinardus [1] claim that this result (in the 3x+1 case) follows from

a general theorem; see [4, p.205]. Theorem 2.3 shows that only one generating

function is needed to represent both the qx+r and the qx-r problems. However,

as n → ∞, the set of poles of fn,q,r(x) becomes dense on the unit circle, in effect

separating the function’s domain into two components.

We now can prove a generalization of the contour result conjectured earlier.

Theorem 2.4 For fixed odd (q, r) and each m,n ≥ 1 we have

∮

|x|=2

fn,q,r(x)x
m−1dx = 2πiT

(n)
−,q,r(m). (3)
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Proof:

We simply use Theorem 2.3:

∮

|x|=2

fn(x)x
m−1dx = −

∮

|y|=1/2

fn

(

1

y

)

y1−m

(

−1

y2

)

dy

=

∮

|y|=1/2

∞
∑

k=1

T
(n)
− (k)yky−1−mdy

= 2πiT
(n)
− (m).

✷

Equation (2) follows as a special case of Equation (3) with m = 1 since

T
(n)
−,3,1(1) = 1 for all n.

3 Interpolating Polynomials An,q,r(s) and Bn,q,r(s)

In this section we derive a new formula for the rational functions fn,q,r(x) which

displays more of their properties as rational functions of x.

This formula is based on explicitly calculating the polar singularities of fn,q,r

which are at most double poles at the 2n-roots of unity. One can use it to give

another derivation of Equation (3) without using Theorem 2.3. This approach

requires more work but reveals another representation for fn,q,r. The follow-

ing theorem gives a partial fractions decomposition of the rational functional

fn,q,r(x).

Theorem 3.1 For fixed odd (q, r) we have for each n ≥ 1

fn,q,r(x) =
∑

s2n=1

[

s2

(x− s)2
Bn,q,r(s) +

s

x− s
(An,q,r(s) +Bn,q,r(s))

]

(4)

in which for a 2n-th root of unity s we have the constants

An,q,r(s) = −
1

2n

2n
∑

j=1

T (n)
q,r (j)s

j +
1

4n

2n
∑

j=1

qO
(n)
q,r (j)jsj
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and

Bn,q,r(s) =
1

4n

2n
∑

j=1

qO
(n)
q,r (j)sj .

The expression An,q,r(s) is the residue term while Bn,q,r is the double pole

contribution at the 2n-th root of unity s.

Proof:

Suppose s2
n

= 1. An asymptotic expansion around x = s produces

x− s

1− x2n
= −

s

2n
+

1

2

(

1−
1

2n

)

(x− s) +O
(

(x− s)2
)

.

Expanding near the singularity x = s generates

fn(x) =
x2n

(1− x2n)2

2n
∑

j=1

qO
(n)(j)xj +

1

1− x2n

2n
∑

j=1

T (n)(j)xj

=

[

−
s

2n
1

x− s
+

1

2

(

1−
1

2n

)]2

·

[

1 +
2n

s
(x− s)

]

·





2n
∑

j=1

qO
(n)(j)sj +

x− s

s

2n
∑

j=1

qO
(n)(j)jsj





+

[

−
s

2n
1

x− s
+

1

2

(

1−
1

2n

)]

·





2n
∑

j=1

T (n)(j)sj



+O(1)

=
1

(x− s)2
s2

4n

2n
∑

j=1

qO
(n)(j)sj +

1

x− s







−
s

2n

(

1−
1

2n

) 2n
∑

j=1

qO
(n)(j)sj

+
s2

4n
2n

s

2n
∑

j=1

qO
(n)(j)sj +

s2

4n
1

s

2n
∑

j=1

qO
(n)(j)jsj −

s

2n

2n
∑

j=1

T (n)(j)sj







+O(1)

=
1

(x− s)2
s2

4n

2n
∑

j=1

qO
(n)(j)sj +

1

x− s







s

4n

2n
∑

j=1

qO
(n)(j)(j + 1)sj −

s

2n

2n
∑

j=1

T (n)(j)sj







+O(1)

=
s2

(x− s)2
Bn(s) +

s

x− s
(An(s) +Bn(s)) +O(1).

This implies that fn(x) takes the form

∑

s2n=1

[

s2

(x− s)2
Bn(s) +

s

x− s
(An(s) +Bn(s))

]

+ pn(x)

where pn(x) is a polynomial for each n. But since fn(0) = 0 and Equation (1)

implies

lim
|x|→∞

fn(x) = T (n)(2n)− qO
(n)(2n) = 1− 1 = 0,
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this forces pn(x) to be identically zero and we have the desired result.

✷

In the hope of eventually gaining more understanding about the functions

fn, we also generalize a main result of Berg and Meinardus.

Theorem 3.2 Suppose q > r > 0 are both odd. Letting µ = e2πi/q, we have

fn+1,q,r(x
q) = fn,q,r(x

2q) +
1

qxr

q−1
∑

k=0

µ(q−r)k/2fn,q,r(µ
kx2)

Proof:

By splitting the generating function into even and odd components, we have

fn+1(x
q) =

∞
∑

k=1

T (n+1)(k)xqk

=

∞
∑

k=1

T (n+1)(2k)x2qk +

∞
∑

k=1

T (n+1)(2k − 1)x(2k−1)q

=

∞
∑

k=1

T (n)(k)x2qk +

∞
∑

k=1

T (n)

(

qk +
r − q

2

)

x(2k−1)q

= fn(x
2q) +

1

xr

∞
∑

k=1

T (n)

(

qk +
r − q

2

)

x2(qk+(r−q)/2)

= fn(x
2q) +

1

qxr

∞
∑

j=1

T (n)(j)x2j
[

1 + µ(q−r)/2+j + µ2((q−r)/2+j) + · · ·+ µ(q−1)((q−r)/2+j)
]

= fn(x
2q) +

1

qxr

q−1
∑

k=0

µ(q−r)k/2fn(µ
kx2).

✷

4 Averaging Properties of T

We now study the structure of the polar parts of the double poles of fn,q,r which

are given by the residue term An,q,r(s) and the double pole part Bn,q,r(s), where

s is the 2n-th root of unity. We treat s as a fixed 2N -th root of unity and study

how these polar parts change for n ≥ N .
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We saw that Theorem 2.4 was inspired by numerical evidence pointing to an

invariance in a contour integral. Equation (4) gives a new representation of the

generating functions by calculating the residues at each of the poles. These two

theorems hint that there may be some invariance of the residues themselves.

That is the finding of the next theorem which gives some sense of the averaging

which takes place among the iterates. Note the difference when q = 3 versus

q ≥ 5.

Theorem 4.1 Suppose s2
N

= 1. Then

Bn+1,q,r(s) =
q + 1

4
Bn,q,r(s)

for all n ≥ N . If s 6= 1, then

An+1,q,r(s) =
q + 1

4
An,q,r(s)

for all n ≥ N , and

An,q,r(1) =







r
3−q

(

q+1
4

)n
− r

3−q , q 6= 3

− rn
4 , q = 3

for all n.

Proof:

We start with the claim for Bn,q,r(s). We have

4n+1Bn+1(s) =
2n+1
∑

j=1

qO
(n+1)(j)sj

=
2n
∑

j=1

[

sjqO
(n+1)(j) + s2

n+jqO
(n+1)(2n+j)

]

=
2n
∑

j=1

[

sjqO
(n+1)(j) + s1−jqO

(n+1)(2n+1+1−j)
]

=

2n
∑

j=1



sj







qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+ s1−j







qO
(n)(2n+1+1−j), T (n)(2n+1 + 1− j) even

qO
(n)(2n+1+1−j)+1, T (n)(2n+1 + 1− j) odd




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We then have

4n+1Bn+1(s) =

2n
∑

j=1



sj







qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+ s1−j







qO
(n)(1−j), T (n)(1− j) even

qO
(n)(1−j)+1, T (n)(1− j) odd





=
2n
∑

j=1

sj











qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+







qO
(n)(j−2n), T (n)(j − 2n) even

qO
(n)(j−2n)+1, T (n)(j − 2n) odd





=
2n
∑

j=1

sj











qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+







qO
(n)(j), T (n)(j) odd

qO
(n)(j)+1, T (n)(j) even





= (q + 1)

2n
∑

j=1

qO
(n)(j)sj

= (q + 1)4nBn(s).

This yields

Bn+1(s) =
q + 1

4
Bn(s).

In a similar way, an identity for An is derived:

4n+1An(s) =
2n+1
∑

j=1

qO
(n+1)(j)jsj − 2n+1

2n+1
∑

j=1

T (n+1)(j)sj

=

2n
∑

j=1

qO
(n+1)(j)jsj +

2n
∑

j=1

qO
(n+1)(2n+j)(2n + j)sj

−2n+1
2n
∑

j=1

T (n+1)(j)sj − 2n+1
2n
∑

j=1

T (n+1)(2n + j)sj

=

2n
∑

j=1

qO
(n+1)(j)jsj +

2n
∑

j=1

qO
(n+1)(2n+1+1−j)(2n+1 + 1− j)s1−j

−2n+1
2n
∑

j=1

T (n+1)(j)sj − 2n+1
2n
∑

j=1

T (n+1)(2n+1 + 1− j)s1−j

=

2n
∑

j=1

jsj







qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+
2n
∑

j=1

(2n+1 + 1− j)s1−j







qO
(n)(2n+1+1−j), T (n)(1− j) even

qO
(n)(2n+1+1−j)+1, T (n)(1− j) odd

−2n
2n
∑

j=1

sj







T (n)(j), T (n)(j) even

qT (n)(j) + r, T (n)(j) odd
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−2n+1
2n
∑

j=1

s1−j
[

qO
(n+1)(1−j) + T (n+1)(1− j)

]

=

2n
∑

j=1

jsj







qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+

2n
∑

j=1

(2n+1 + 1− j)s1−j







qO
(n)(1−j), T (n)(1− j) even

qO
(n)(1−j)+1, T (n)(1− j) odd

−2n
2n
∑

j=1

sj







T (n)(j), T (n)(j) even

qT (n)(j) + r, T (n)(j) even
− 2n+1

2n
∑

j=1

s1−j







qO
(n)(1−j), T (n)(1− j) even

qO
(n)(1−j)+1, T (n)(1− j) odd

−2n
2n
∑

j=1

s1−j







T (n)(j), T (n)(j) even

qT (n)(j) + r, T (n)(j) even

=

2n
∑

j=1

jsj







qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+

2n
∑

j=1

(j − 2n)sj







qO
(n)(j−2n), T (n)(j − 2n) even

qO
(n)(j−2n)+1, T (n)(j − 2n) odd

−2n
2n
∑

j=1

sj







T (n)(j), T (n)(j) even

qT (n)(j) + r, T (n)(j) even

−2n
2n
∑

j=1

sj







T (n)(j − 2n), T (n)(j − 2n) even

qT (n)(j − 2n) + r, T (n)(j − 2n) even

=
2n
∑

j=1

jsj











qO
(n)(j), T (n)(j) even

qO
(n)(j)+1, T (n)(j) odd

+







qO
(n)(j), T (n)(j) odd

qO
(n)(j)+1, T (n)(j) even





−2n
2n
∑

j=1

jsj







qO
(n)(j), T (n)(j) odd

qO
(n)(j)+1, T (n)(j) even

−2n
2n
∑

j=1

sj











T (n)(j), T (n)(j) even

qT (n)(j) + r, T (n)(j) odd
+







T (n)(j), T (n)(j) odd

qT (n)(j) + r, T (n)(j) even





+2n
2n
∑

j=1

jsj







qO
(n)(j), T (n)(j) odd

qO
(n)(j)+1, T (n)(j) even

=
2n
∑

j=1

qO
(n)(j)jsj(q + 1)− 2n

2n
∑

j=1

[

(q + 1)T (n)(j) + r
]

sj

= (q + 1)4nAn(s)− 2nr
2n
∑

j=1

sj .

If s 6= 1, then the last sum equals zero and

An+1(s) =
q + 1

4
An(s).
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If s = 1, we have

An+1(1) =
q + 1

4
An(1)−

r

4
.

Solving this linear difference equation, coupled with A0(1) = 0 produces

An(1) =







r
3−q

(

q+1
4

)n
− r

3−q , q 6= 3,

− rn
4 , q = 3.

✷

We can use Theorem 4.1 to express the iterates of T in terms of An,q,r(s)

and Bn,q,r(s) directly.

Theorem 4.2 For fixed (q, r) the nth iterate of Tq,r(·) at m ≥ 1 is given by

T (n)
q,r (m) =

∑

s2n=1

1

sm
[mBn,q,r(s)−An,q,r(s)] .

Proof: For fixed m ≥ 1, we have

∑

s2n=1

1

sm
[mBn,q,r(s)−An,q,r(s)] =

∑

s2n=1

1

sm

2n
∑

k=1

[

m

4n
qO

(n)(k)sk +
1

2n
T (n)(k)sk −

1

4n
qO

(n)(k)ksk
]

=

2n
∑

k=1

∑

s2n=1

[

m

4n
qO

(n)(k) +
1

2n
T (n)(k)−

k

4n
qO

(n)(k)

]

sk−m

=
∑

s2n=1

[

m

4n
qO

(n)(m) +
1

2n
T (n)(m)−

m

4n
qO

(n)(m)

]

= T (n)(m)

✷

In the q = 3 case, these theorems can be used to heuristically argue that

any orbit is bounded. Theorem 4.1 asserts that if s is a 2n-th root of unity,

then the functions An,3,r(s) and Bn,3,r(s) remain fixed for all higher values of

n. Equation (4) then suggests that the family of functions {fn,3,r(x), n ≥ 1}

are uniformly bounded on any compact set in the open unit disk. Montel’s

Theorem[3] then implies that this sequence of functions is normal, that is, there

is a subsequence which converges uniformly. This would imply that the coef-

ficients in the generating functions each enter a cycle, and so the T -orbit of

12



every positive integer eventually enters a cycle. This same observation about

the functions An,3,r(s) and Bn,3,r(s), coupled with Theorem 4.2, also suggests

that the T -orbits of every positive integer are bounded.

If q ≥ 5, Theorem 4.1 asserts that both An,3,r(s) and Bn,3,r(s) diverge as

n → ∞ if they take non-zero values for some choice of n. Equation (4) or

Theorem 4.2 suggest that the T -orbits of positive integers diverge. Care must

be taken here, however, since some orbits may converge. For example, when

q = 5 and r = 1, there is the cycle {1, 3, 8, 4, 2}. It is conjectured (see [5]) that

the set of points which diverge has density one.

5 The x+ 1 Problem

We illustrate our theorems with the very special case q = r = 1. This case,

the x+1 problem, is completely understood: for m ≥ 1, the iterates of T1,1(m)

strictly decrease until they reach the fixed point m = 1. However, it is instruc-

tive to compute the generating functions An,1,1(s) and Bn,1,1(s).

It is not difficult to show that T
(n)
1,1 (j) = 1 for all 1 ≤ j ≤ 2n (thinking in

binary helps). Theorem 2.2 is then used to show that

fn,1,1(x) =
x

1− x
·

1

1− x2n
.

This family of functions is clearly uniformally bounded on any compact subset

of the interior of the unit disk. We also have that

Bn,1,1(s) = 0

if s 6= 1 is a root of unity and Bn,1,1(1) = 1/2n. Moreover,

An,1,1(s) =
s

s− 1
·
1

2n

if s 6= 1 is a root of unity and An,1,1(1) = (2−n − 1)/2. Equation (4) then gives

fn,1,1(x) =
1

2n
·

1

(1− x)2
+

1

x− 1

[

3

2
·
1

2n
−

1

2

]

+
∑

s2n=1,s 6=1

s

x− s
·

s

s− 1
·
1

2n
.
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The structure of the expressions for An,1,1(s) and Bn,1,1(s) confirm Theorem

4.1. Lastly, Theorem 4.2 yields

T
(n)
1,1 (j) =

j

2n
+

1

2

(

1−
1

2n

)

−
∑

s2n=1,s 6=1

1

sj
s

s− 1
·
1

2n
.
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