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Arctangent Formulas and Pi

Marc Chamberland and Eugene A. Herman

Abstract. Using both geometrical and analytical approaches, new multivariable formulas con-

necting the arctangent function and the number π are produced.

1. INTRODUCTION. Since the discovery of Machin’s formula

π

4
= 4 arctan

(

1

5

)

− arctan

(

1

239

)

, (1)

the arctangent function has been ubiquitous in calculations of π. While formulas like

(1) have been heavily explored [1], we seek formulas that link π with a linear combi-

nation of arctangents of general arguments. The simplest example is the well-known

equation

π

2
= arctan(x) + arctan

(

1

x

)

(2)

for all x > 0. Another example, a variant of an equation due to Euler, states

π

2
= arctan(x)− arctan(x− y) + arctan

(

x2 − xy + 1

y

)

for all x and when y > 0. The goal of this note is to develop arctangent formulas with

several variables.

2. GEOMETRY OF TRIANGLES AND TETRAHEDRA. This study started

serendipidously by considering the inscribed circle in a general triangle: see Figure 1.

The area of the triangle can be computed in two ways. By dissecting the triangle into

r
r

r

ba

a

c

c

b

Figure 1. Inscribed circle in a triangle.

three subtriangles, we find that its total area A satisfies

A =
1

2
(a+ c)r +

1

2
(a+ b)r +

1

2
(b+ c)r = (a+ b+ c)r,
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where r is the radius of the inscribed circle. Alternatively, applying Heron’s formula

to the original triangle yields

A =
√

abc(a+ b+ c).

Setting the two expressions equal produces

r =

√

abc

a+ b+ c
.

Since the six angles surrounding the center of the inscribed circle sum to 2π, this

produces

π = arctan

(

a

√

a+ b+ c

abc

)

+ arctan

(

b

√

a+ b+ c

abc

)

(3)

+arctan

(

c

√

a+ b+ c

abc

)

for all a, b, c > 0.

To generalize this geometric approach, one could consider an (n − 1)-sphere in-

scribed in a simplex in n dimensions. The volume of the simplex can be calculated

with the Cayley–Menger determinant. More challenging is the generalization of the

angles around the sphere’s center, sometimes called “solid angles”; see [3, 4]. The

complexity of this approach, particularly in higher dimensions, suggests an analytic

approach for finding formulas similar to equation (3).

3. ARCTANGENT AND SYMMETRIC POLYNOMIALS. Some beautiful iden-

tities connect the tangent function with symmetric polynomials. Let xi = tan(θi) for

i = 1, 2, 3, . . . and let ek(x) denote the kth elementary symmetric polynomial in the

variables x1, x2, x3, . . .. The first few examples are

e0(x) = 1, e1(x) =
∑

i

xi, e2(x) =
∑

i<j

xixj, e3(x) =
∑

i<j<k

xixjxk.

Then a little-known formula [2, 5] is

tan

(

∑

i

θi

)

=
e1(x)− e3(x) + e5(x)− · · ·
e0(x)− e2(x) + e4(x)− · · · . (4)

If there are only finitely many θi that are nonzero, then the right side of this identity is

also finite. Examples are

tan(θ1 + θ2) =
e1(x)

e0(x)− e2(x)
=

x1 + x2

1− x1x2

; (5)

tan(θ1 + θ2 + θ3) =
e1(x)− e3(x)

e0(x)− e2(x)
=

(x1 + x2 + x3)− x1x2x3

1− (x1x2 + x1x3 + x2x3)
; (6)

2 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 August 4, 2018 2:23 p.m. arctan˙2.tex page 3

tan(θ1 + θ2 + θ3 + θ4) =
e1(x)− e3(x)

e0(x)− e2(x) + e4(x)

=
(x1 + x2 + x3 + x4)− (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

1− (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) + x1x2x3x4

. (7)

Special choices of the angles produce formulas of the type that we seek. For ex-

ample, setting θ1 + θ2 = π/2 in equation (5) occurs exactly when x1x2 = 1. If x1 =
y1f(y1, y2) and x2 = y2f(y1, y2), then f(y1, y2) = 1/

√
y1y2 for yi > 0 for all i.

This produces

π

2
= arctan

(

y1√
y1y2

)

+ arctan

(

y2√
y1y2

)

(8)

= arctan

(
√

y1
y2

)

+ arctan

(
√

y2
y1

)

.

Of course this is equivalent to equation (2).

This approach can be generalized by letting xi = yif(y1, y2, . . . , yn) for i =
1, 2, . . . , n. Setting the numerator of equation (6) equal to zero produces

π = arctan

(

y1

√

y1 + y2 + y3
y1y2y3

)

+ arctan

(

y2

√

y1 + y2 + y3
y1y2y3

)

+arctan

(

y3

√

y1 + y2 + y3
y1y2y3

)

, (9)

which is the same as equation (3), while setting the denominator of equation (6) equal

to zero gives

π

2
= arctan

(

y1√
y1y2 + y2y3 + y3y1

)

+ arctan

(

y2√
y1y2 + y2y3 + y3y1

)

+arctan

(

y3√
y1y2 + y2y3 + y3y1

)

. (10)

Equation (7), with its numerator equal to zero, generates

π = arctan

(

y1

√

y1 + y2 + y3 + y4
y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4

)

+arctan

(

y2

√

y1 + y2 + y3 + y4
y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4

)

+arctan

(

y3

√

y1 + y2 + y3 + y4
y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4

)

+arctan

(

y4

√

y1 + y2 + y3 + y4
y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4

)

. (11)
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It is natural to wonder whether there are other “simple” choices of f that produce

equations of the form

C = arctan (y1f(y1, y2, . . . , yn)) + arctan (y2f(y1, y2, . . . , yn))

+ · · ·+ arctan (ynf(y1, y2, . . . , yn)) (12)

for some constant C and all y1, y2, . . . , yn > 0.

Theorem 1. The only equations of the form (12) satisfied by a nonzero function f =
√

p

q
, where p and q are polynomials, are the equations (8)–(11).

Proof. Letting xi = yif(y1, y2, . . . , yn), use equations (4) and (12) to write

D := tan(C) = tan(arctan(x1) + · · ·+ arctan(xn))

=
e1(x)− e3(x) + e5(x)− · · ·
e0(x)− e2(x) + e4(x)− · · ·

=
fe1(y)− f3e3(y) + f5e5(y)− · · ·
e0(y)− f2e2(y) + f4e4(y)− · · · . (13)

For the rest of the proof, the y will be suppressed from ei. Now we break the proof

into two cases.

n is even. Let n = 2m. Equation (13) can be written as

D
(

e0 − f2e2 + · · ·+ (−1)mf2me2m
)

= fe1 − f3e3 + · · ·+ (−1)m−1f2m−1e2m−1. (14)

First, consider the case where f = p/q and p and q are polynomials with no common

factors. Equation (14) can be written as

D
(

e0q
2m − p2q2m−2e2 + · · ·+ (−1)m−1p2me2m

)

= pq2m−1e1 − p3q2m−3e3 + · · ·+ (−1)m−1p2m−1qe2m−1.

Since p is a factor of all but one of the terms, we must have that p divides e0q
2m.

This forces p = α for some constant α. Similarly, q is a factor of all but one term,

so because the elementary symmetric polynomials are irreducible, either q = β or

q = βe2m for some constant β. The latter option will not work because this produces

the term De0q
2m = D(βe2m)

2m, the only term with degree (2m)2. This implies that

f is a constant, necessarily the trivial case f = 0.

Now suppose that f =
√

p/q, f is not rational, and p and q are polynomials with

no common factors. Equation (14) can be written as

D
(

e0q
m − pqm−1e2 + · · ·+ (−1)mpme2m

)

=

√

p

q

(

qme1 − pqm−1e3 + · · ·+ (−1)m−1pm−1qe2m−1.
)

This equation only holds in two cases: D = 0 or D = ∞.
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When D = 0, we obtain

0 = qm−1e1 − pqm−2e3 + · · ·+ (−1)m−1pm−1e2m−1. (15)

As before, the irreducibility of ek implies there is a constant α such that p = α or

p = αe1, and subsequently, there exists a constant β and k ∈ N ∪ {0} such that q =
βek1e2m−1. By replacing p and q in equation (15) and considering the degree of each

term, we see that the only possible option (up to scaling) is m = 2 (n = 4), p = e1,

and q = e3. This is equation (11). The case D = ∞ is similar, and implies

0 = e0q
m − pqm−1e2 + · · ·+ (−1)mpme2m.

This forces p = α for some constant α and q = β or q = βe2m for some constant β.

The only feasible option (up to scaling) is m = 1 (n = 2), p = 1, and q = e2. This is

equation (8).

n is odd. Let n = 2m+ 1. Equation (13) can be written as

D
(

e0 − f2e2 + · · ·+ (−1)mf2me2m
)

= fe1 − f3e3 + · · ·+ (−1)mf2m+1e2m+1.

Paralleling the even case, one can show that there is no nontrivial rational function f
satisfying this equation. If f takes the form

√

p/q, one again needs to consider two

cases, D = 0 and D = ∞.

If D = 0, this forces p = α or p = αe1 for some constant α, and q = β or q =
βe2m+1 for some constant β. The only feasible solution (up to scaling) is m = 1
(n = 3), p = e1, and q = e3. This is equation (9). If D = ∞, one has p = α for

some constant α and either q = β or q = βe2m for some constant β. The only feasible

solution (up to scaling) is m = 1 (n = 3), p = 1, and q = e2. This is equation (10).

There are other choices of f , but they get more complicated. A simple example uses

equation (5) with θ1 + θ2 = π/4, producing

π

4
= arctan

(

√

y2
1 + 6y1y2 + y2

2 − y1 − y2
2y1

)

+arctan

(

√

y2
1 + 6y1y2 + y2

2 − y1 − y2
2y2

)

for y1, y2 > 0.
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