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Arctangent Formulas and Pi

Marc Chamberland and Eugene A. Herman

Abstract. Using both geometrical and analytical approaches, new multivariable formulas con-
necting the arctangent function and the number 7 are produced.

1. INTRODUCTION. Since the discovery of Machin’s formula

™ _ farctan & £ L (1)
4 = 4 arctan 5 arctan 239 s

the arctangent function has been ubiquitous in calculations of 7. While formulas like
(1) have been heavily explored [1], we seek formulas that link 7 with a linear combi-
nation of arctangents of general arguments. The simplest example is the well-known
equation

T 1
5= arctan(x) + arctan <) (2)
x

for all z > 0. Another example, a variant of an equation due to Euler, states

:cz—xy+1>

T
5= arctan(z) — arctan(z — y) + arctan <
Y

for all z and when y > 0. The goal of this note is to develop arctangent formulas with
several variables.

2. GEOMETRY OF TRIANGLES AND TETRAHEDRA. This study started
serendipidously by considering the inscribed circle in a general triangle: see Figure 1.
The area of the triangle can be computed in two ways. By dissecting the triangle into

Figure 1. Inscribed circle in a triangle.

three subtriangles, we find that its total area A satisfies

1 1 1
A:§(a—|—c)r+§(a+b)r—|—§(b+c)r:(a+b+c)r,
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where 7 is the radius of the inscribed circle. Alternatively, applying Heron’s formula
to the original triangle yields

A = \/abc(a + b+ c).

Setting the two expressions equal produces

B abc
Va+b+c
Since the six angles surrounding the center of the inscribed circle sum to 27, this
produces
b b
T = arctan | a arbre + arctan | b atdte 3)
abce abc
( a+b+ c)
+arctan | ¢/ —————
abe

forall a, b, c > 0.

To generalize this geometric approach, one could consider an (n — 1)-sphere in-
scribed in a simplex in 7 dimensions. The volume of the simplex can be calculated
with the Cayley—Menger determinant. More challenging is the generalization of the
angles around the sphere’s center, sometimes called “solid angles”; see [3, 4]. The
complexity of this approach, particularly in higher dimensions, suggests an analytic
approach for finding formulas similar to equation (3).

3. ARCTANGENT AND SYMMETRIC POLYNOMIALS. Some beautiful iden-
tities connect the tangent function with symmetric polynomials. Let z; = tan(6;) for

i=1,2,3,...and let e;(z) denote the kth elementary symmetric polynomial in the
variables x1, 5, T3, . . .. The first few examples are
eo(x) =1, e(z)= Zwi, es(x) = Z%‘fﬁj, es(x) = Z LT T
i i<j i<j<k

Then a little-known formula [2, 5] is
ei(z) —es(x) +es(x) — -+
o <Z ) eo(w) — e2(x) +ea(w) — -+ @

If there are only finitely many 6; that are nonzero, then the right side of this identity is
also finite. Examples are

e () T1 + 2
tan (60 0y) = = : 5
an( 1 + 2) 60($) - eg(l') 1— 331162’ ( )
tan(fy + 0y + 05) = er(z) —es(w)  (z1+ 22+ 23) — 217273 ©

eo(z) —ea(x) 1 — (z129 + 2123 + 2o73)
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e1(z) — e3(z)
eo(x) — ex(x) + eq(x)
(I‘l + To + I3 + 5[?4) — ($1$2$3 + L1ToT4 + T1X3T4 + I‘2$3I‘4)

— .7
1 — (120 + 2173 + 2104 + TaT3 + Loy + T3Ta) + T12T20374 @

tan(91 + 92 -+ 93 + 04) =

Special choices of the angles produce formulas of the type that we seek. For ex-
ample, setting ¢, + 0, = / 2 in equation (5) occurs exactly when x12, = 1. If 21 =

y1f (Y1, y2) and w2 = Yo f (Y1, y2), then f(y1,92) = 1/\/y1y2 for y; > 0 for all 4.
This produces

T_ arctan < L > + arctan ( Y2 ) (8)
2 VY1Y2 VY1Y2

= arctan (4 /y1> -+ arctan <1 /y2> .
Y2 Y1

Of course this is equivalent to equation (2).
This approach can be generalized by letting x; = y; f(y1, Y2, ..., Yn) for i =
1,2, ..., n. Setting the numerator of equation (6) equal to zero produces

. Y1+ Y2+ Y3 Y1+ Y2+ Ys
T = arctan | y;4 | ————— | +arctan | ysy | ————
Y1Y2Yys Y1Y2Y3
Y1Y2Yys

which is the same as equation (3), while setting the denominator of equation (6) equal
to zero gives

™ Y1 Y2
— — arctan < > + arctan < )
2 VY1Y2 + Y2ys + Y3 VUY1Y2 + Y2ys + Ysin

+ arctan < % > . (10)
VU1Y2 + Y2Ys + Yz

Equation (7), with its numerator equal to zero, generates

Y1+ Y2+ Y3+ s
7 = arctan | y;
Y1Y2Y3 + Y1Y2Yas + Y1Y3Ya + Y2Y3Ya
Y1+ Y2+ Y3+ ya
+arctan | ys
Y1Y2Y3 + Y1Y2Yas + Y1Y3Ya + Y2Y3Ya

Y1+ Y2+ Y3+ s
+arctan | ys
Y1Y2Y3 + Y1Y2Yas + Y1Y3Ya + Y2Y3Ya

Y1+ Y2+ Y3+ s
+arctan | y, . (11)
Y1Y2Y3 + Y1Y2Yas + Y1Y3Ya + Y2Y3Ya
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It is natural to wonder whether there are other “simple” choices of f that produce
equations of the form

C = arctan (y1 f(y1, Y2y - - -, Yn)) + arctan (yo. f (Y1, Y2, - - - s Yn))
+ -+ arctan (Y, f (Y1, Y2, - -, Yn)) (12)
for some constant C' and all ¢y, ¥, ..., Yy, > 0.
Theorem 1. The only equations of the form (12) satisfied by a nonzero function f =
\/g, where p and q are polynomials, are the equations (8)—(11).
Proof. Letting z; = y; f (Y1, Y2, - - -, Yn), use equations (4) and (12) to write

D := tan(C) = tan(arctan(x,) + - - - + arctan(z,,))
_ e1(x) —es(z) + es(z) — - -
eo(x) - 62($) + 64(£L’) — .
_ fei(y) — fles(y) + fPes(y) — -
eo(y) — fea(y) + frea(y) — -

For the rest of the proof, the y will be suppressed from e;. Now we break the proof
into two cases.

(13)

n is even. Let n = 2m. Equation (13) can be written as
D (60 — fPea+ -+ (—1)mf2m€2m)
=fer— fles+ -+ (=1)" P ey (14)

First, consider the case where f = p/q and p and ¢ are polynomials with no common
factors. Equation (14) can be written as

D (60q2m o p2qu7262 + L. + (_1)m71p2m62m)
— quTrL—le1 _ p3q2m—3€3 _|_ .. + (_1)m—1p2m—1q62m71'

Since p is a factor of all but one of the terms, we must have that p divides eyq*™.
This forces p = « for some constant «.. Similarly, ¢ is a factor of all but one term,
so because the elementary symmetric polynomials are irreducible, either ¢ = 5 or
q = [es,, for some constant 3. The latter option will not work because this produces
the term Deyg®™ = D(fBes,,)*™, the only term with degree (2m)?. This implies that
f is a constant, necessarily the trivial case f = 0.

Now suppose that f = /p/q, f is not rational, and p and ¢ are polynomials with
no common factors. Equation (14) can be written as

D (eoq™ —pg"lea + -+ (=1)"p"e2m)
- \/f (¢"er —pg™ es+ -+ (=1)" TP e 1)

This equation only holds in two cases: D = 0 or D = oc.
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When D = 0, we obtain
0=q¢""er —pg"Peg+ -+ (1) TP legy. (15)

As before, the irreducibility of e implies there is a constant « such that p = o or
p = aey, and subsequently, there exists a constant 5 and k& € N U {0} such that ¢ =
Berea, 1. By replacing p and ¢ in equation (15) and considering the degree of each
term, we see that the only possible option (up to scaling) ism = 2 (n = 4), p = ey,
and ¢ = e3. This is equation (11). The case DD = oo is similar, and implies

0=-eoq" —pg" e+ + (=1)"p"eam.

This forces p = « for some constant « and ¢ =  or ¢ = Bes,, for some constant j3.
The only feasible option (up to scaling) ism =1 (n = 2), p = 1, and ¢ = e,. This is
equation (8).

n is odd. Let n = 2m + 1. Equation (13) can be written as
D (60 — fPeat o+ (—1)mf2m€2m) = fer— fPes+ -+ (—1)mf2m+1€2m+1~

Paralleling the even case, one can show that there is no nontrivial rational function f
satisfying this equation. If f takes the form y/p/q, one again needs to consider two
cases, D = 0and D = oo.

If D = 0, this forces p = « or p = «e; for some constant «, and ¢ = 3 or ¢ =
Beams1 for some constant 3. The only feasible solution (up to scaling) is m = 1
(n = 3), p = ey, and ¢ = e3. This is equation (9). If D = oo, one has p = « for
some constant « and either ¢ = 3 or ¢ = [e,,, for some constant 3. The only feasible
solution (up to scaling) is m = 1 (n = 3), p = 1, and ¢ = es. This is equation (10).

|

There are other choices of f, but they get more complicated. A simple example uses
equation (5) with 6, + 0, = 7 /4, producing

VY 6y1ys + Y3 — 1 — ¥
2y,

T £
— — arctan
1

VY +6y1ys +y2 — 1 — Yo
AT

-+ arctan

for y1,y2 > 0.
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