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Abstract. A certain alternating sum u(n) of n + 1 products of two bino-

mial coefficients has a property similar to Wolstenholme’s theorem, namely
u(p) ≡ −1 (mod p3) for all primes p ≥ 5. However, this congruence also

holds for certain composite integers p which appear to always have exactly
two prime divisors, one of which is always 2 or 5. This phenomenon will be

partly explained and the composites in question will be characterized. We also

study the sequence u(n) in greater detail, especially its growth and its sign
distribution.

1. Introduction

The well-known theorem of Wolstenholme states that for any prime p ≥ 5 we
have

(1.1)
(

2p− 1
p− 1

)
≡ 1 (mod p3).

This congruence is of interest also because no composite integer is known for which
it holds, and the truth of the converse of Wolstenholme’s theorem seems to be
a difficult problem. For a brief history, generalizations, and references on this
problem, see [20]; further recent results can be found in [11].

In a recent paper [4] we studied a class of binomial sums, namely

(1.2) uε
a,b(n) :=

n∑
k=0

(−1)εk

(
n

k

)a(
2n

k

)b

,

for nonnegative integers a, b, n, and ε ∈ {0, 1}, and we showed that these sums are
closely related to Wolstenholme’s theorem:

For any prime p ≥ 5 we have

(1.3) uε
a,b(p) ≡ 1 + (−1)ε2b (mod p3),

except when (ε, a, b) = (0, 0, 1) or (0, 1, 0); see [4, Theorem 3.1].
As in the case of Wolstenholme’s theorem, this last result raises the question

of a possible converse. Computations show that (1.3) holds for certain composite
integers p, but we observed this only in the following two cases:

1. For many triples (ε, a, b) the congruence (1.3) holds for powers of 2, i.e., for
p = 2r, r ≥ 2. This case has been completely characterized in [4, Theorem 4.1].
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2. In the case (ε, a, b) = (1, 1, 1) we observed that the congruence (1.3) holds for
the composite integers n = 10, 25, 146, and 586. These are the only composites
less than 1000, but there are a total of 75 such composite integers up to 105. All
have exactly two prime divisors, one of which is always 2 or 5; see Table 1 below.

It is the purpose of this paper to (partly) explain this phenomenon. In the
process we study the sums in (1.2) for (ε, a, b) = (1, 1, 1) in greater details than was
done in [4]. To simplify notation, we set

(1.4) u(n) :=
n∑

k=0

(−1)k

(
n

k

)(
2n

k

)
;

the first few values, for n = 1, 2, . . ., are −1,−1, 8,−17,−1, 116,−334, 239, 1709,
−7001; see also Table 3 below. The general case (1.3) for the analogue of Wolsten-
holme’s theorem simplifies to

(1.5) u(p) ≡ −1 (mod p3),

for primes p ≥ 5. Therefore we need to study congruences for u(n) modulo p3; this
will be done in Section 2, along with some congruences modulo p. In Section 3 we
make some general remarks about composite solutions of (1.5), and this is followed
in Section 4 by a detailed study of a special case. In Section 5 we study the
sign pattern and growth behavior of the sequence u(n), along with some remarks
on numerical computations. We close this paper by stating a number of open
problems.

2. Congruences for u(n)

Although no closed form for the sum in (1.4) is known (for a more general discus-
sion on this, see [4]), the sequence u(n) does in many ways behave like a sequence
of binomial coefficients. One such instance is (1.5) which we already compared with
(1.1). In this section we shall carry the analogy further, thus obtaining congruences
that will be important for the following sections.

Wolstenholme’s congruence (1.1) can be slightly rewritten as
(
2p
p

)
≡ 2 =

(
2
1

)
(mod p3), and this has been generalized to

(2.1)
(

np

mp

)
≡

(
n

m

)
(mod p3)

for all primes p ≥ 5 and nonnegative integers m and n. According to [9], the
congruence (2.1) was first obtained by Ljunggren [3]; for more recent proofs and
generalizations, see [6], [9] and [11]. The following main result of this section can
be seen as a one-parameter analogue to (2.1).

Theorem 2.1. For all primes p ≥ 5 and integers m ≥ 1 we have

(2.2) u(mp) ≡ u(m) (mod p3).

There are numerous useful and often remarkable congruences and divisibility re-
sults for binomial coefficients; see [7, Ch. XI] for older results and [9] for a modern
perspective. The following classical results will be needed in the proof of Theo-
rem 2.1; see [9, p. 254].

Lemma 2.1. (a) (Kummer [16]) The exact power of the prime p which divides
(

n
m

)
is given by the number of “carries” when m and n−m are added in base p.
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(b) (Anton [2]) Let pl be the exact power of p dividing
(

n
m

)
. Then we have

(2.3)
(−1)l

pl

(
n

m

)
≡ n0!

m0!r0!
n1!

m1!r1!
· · · nd!

md!rd!
(mod p),

where n = n0 + n1p + . . . + ndp
d,m = m0 + m1p + . . . + mdp

d, and n − m =
r0 + r1p + . . . + rdp

d, with 0 ≤ nj ,mj , rj ≤ p− 1.

Proof of Theorem 2.1. We split the sum in (1.4) as follows:

(2.4) u(pm) =
m−1∑
k=0

p−1∑
j=1

(−1)pk+j

(
pm

pk + j

)(
2pm

pk + j

)
+

m∑
k=0

(−1)pk

(
pm

pk

)(
2pm

pk

)
.

We first consider the inner sum on the right of (2.4). If we write pm− (pk + j) =
p(m − k − 1) + (p − j), we see that in adding pk + j and pm − (pk + j) in base p
we have at least one carry from the p0 column to the p1 column, and this holds for
all k = 0, 1, . . . ,m− 1. If there is another carry, it is independent of j; the same is
true for

(
2pm
pk+j

)
. Hence, by Lemma 2.1(a) the two binomial coefficients in the sum

in question are both divisible at least by p. If one of them is also divisible by p2,
we are done since then the entire inner sum is divisible by p3, for a given k.

We are therefore left with the case where both binomial coefficients are divisible
by p but not by p2. To deal with this case, we write m = m0 + m1p + . . . + mdp

d,
k = k0 + k1p + . . . + kdp

d, and m− k − 1 = r0 + r1p + . . . + rdp
d. Then we have

pm = 0 + m0p + . . . + mdp
d+1,

pk + j = j + k0p + . . . + kdp
d+1,

pm− (pk + j) = (p− j) + r0p + . . . + rdp
d+1,

and thus, by (2.3),

−1
p

(
pm

pk + j

)
≡ 0!

j!(p− j)!
m0!

k0!r0!
· · · md!

kd!rd!
=

1
j!(p− j)!

Ak (mod p),

and similarly,
−1
p

(
2pm

pk + j

)
≡ 1

j!(p− j)!
Bk (mod p),

where Ak, Bk depend on k (and, of course, on p and m), but not on j since mi, ki

and ri are independent of j. Hence we have

1
p2

p−1∑
j=1

(−1)j

(
pm

pk + j

)(
2pm

pk + j

)
≡ AkBk

p−1∑
j=1

(−1)j

(j!(p− j)!)2
(mod p),

but since p is odd, the right-hand sum vanishes by symmetry, and we have for all
0 ≤ k ≤ m− 1,

(2.5)
p−1∑
j=1

(−1)j

(
pm

pk + j

)(
2pm

pk + j

)
≡ 0 (mod p3).

Finally we consider the last sum in (2.4). Using (2.1) and the fact that p is odd,
we get

m∑
k=0

(−1)pk

(
pm

pk

)(
2pm

pk

)
≡

m∑
k=0

(−1)k

(
m

k

)(
2m

k

)
= u(m) (mod p3).
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This and (2.5) substituted into (2.4) give (2.2), which completes the proof. �

Another well-known congruence for binomial coefficients (in fact better known
and more widely used than (2.1) and Lemma 2.1) is Lucas’ Theorem which states
that

(2.6)
(

np + a

kp + b

)
≡

(
n

k

)(
a

b

)
(mod p)

for all primes p and nonnegative integers n, k, a, b with 0 ≤ a, b < p; see [6] or [9],
or the original paper [17].

The following congruence for the numbers u(n) can be seen as an analogue of
Lucas’ Theorem.

Theorem 2.2. Let p ≥ 3 be a prime, and m ≥ 1 and a be integers with 0 ≤ a ≤
p−1
2 . Then

(2.7) u(mp + a) ≡ u(m)u(a) (mod p).

Proof. Using the definition (1.4) and the congruence (2.6), we get

u(pm + a) =
m∑

k=0

p−1∑
j=0

(−1)pk+j

(
pm + a

pk + j

)(
2pm + 2a

pk + j

)

≡
m∑

k=0

(−1)pk

(
m

k

)(
2m

k

) p−1∑
j=0

(−1)j

(
a

j

)(
2a

j

)
(mod p)

= u(a)
m∑

k=0

(−1)k

(
m

k

)(
2m

k

)
,

and this gives (2.7). Here we have used the fact that 2a ≤ p − 1 and that p is
odd. �

Lucas’ Theorem (2.6) is often quoted in the form

(2.8)
(

n

k

)
≡

(
nd

kd

)
· · ·

(
n1

k1

)(
n0

k0

)
(mod p),

where n and k have the base p representations n = ndp
d + · · · + n1p + n0 and

k = kdp
d + · · · + k1p + k0, 0 ≤ nj , kj < p. The following partial analogue follows

immediately from Theorem 2.2.

Corollary 2.1. If the integer n is such that n = ndp
d + · · · + n1p + n0 with

0 ≤ nj ≤ p−1
2 for all j = 0, 1, . . . , d, then

(2.9) u(n) ≡ u(nd) · · ·u(n1)u(n0) (mod p).

The restriction 0 ≤ a ≤ p−1
2 in Theorem 2.2 leads to the question whether there

is a congruence analogous to (2.7) for the “upper half” of the range of a. This will
be addressed in the following result.

Theorem 2.3. For each integer b ≥ 1 there is an integer w(b) such that

(2.10) u(p− b) ≡ 22−3bw(b) (mod p)

for all primes p ≥ 2b + 1. More generally, if m ≥ 1 is another integer, then

(2.11) u(mp− b) ≡ 22−3bw(m)w(b) (mod p),
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again for all p ≥ 2b + 1. The sequence of integers w(b) is given by

(2.12) w(b) =
b−1∑
k=0

(−1)k

(
2b− 1

k

)(
b− 1

k

)
.

Remark. Note the similarity between the sum w(b) and our sum u(n) defined in
(1.4). Using an explicit formula for the Jacobi polynomial P

(a,b)
n (x) (see, e.g., Eq.

(3.131) in [10, p. 37] or Eq. (22.3.1) in [1, p. 775]), we have

(2.13) w(b) = 2b−1P
(0,b)
b−1 (0).

This fact will be used in the following proof. The first few values of w(b) are as
follows:

b 1 2 3 4 5 6 7 8 9 10 11 12 13
w(b) 1 -2 1 8 -29 34 92 -512 919 818 -9151 22472 -2924

Proof of Theorem 2.3. (i) Lucas’ Theorem (2.6) gives for 2b ≤ p− 1,(
mp− b

kp + j

)
=

(
(m− 1)p + (p− b)

kp + j

)
≡

(
m− 1

k

)(
p− b

j

)
(mod p),(

2mp− 2b

kp + j

)
=

(
(2m− 1)p + (p− 2b)

kp + j

)
≡

(
2m− 1

k

)(
p− 2b

j

)
(mod p).

Using these congruences and proceeding as in the proof of Theorem 2.2 we get

u(mp− b) =
m−1∑
k=0

p−1∑
j=0

(−1)pk+j

(
mp− b

kp + j

)(
2mp− 2b

kp + j

)

≡
m−1∑
k=0

(−1)k

(
m− 1

k

)(
2m− 1

k

) p−1∑
j=0

(−1)j

(
p− b

j

)(
p− 2b

j

)
(mod p),

where we have used the fact that p is odd. Next note that, again by (2.6), since
p ≥ 2b + 1 we have

(2.14)
(

2p− 2b

j

)
≡

(
p + (p− 2b)

j

)
≡

(
p− 2b

j

)
(mod p),

so that the right-most sum in the last formula is congruent to u(p − b) modulo p,
for 1 ≤ b ≤ p−1

2 . Hence by (2.12), u(mp− b) ≡ w(m)u(p− b) (mod p), and (2.11)
follows from (2.10).

(ii) To prove (2.10), we begin by rewriting the binomial coefficient(
p− b

j

)
=

(p− b)(p− b− 1) · · · (p− b− j + 1)
j!

(2.15)

≡ (−1)j b(b + 1) · · · (b + j − 1)
j!

(mod p)

= (−1)j

(
j + b− 1

j

)
= (−1)j

(
j + b− 1

b− 1

)
,
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so that we get with (2.14),

(2.16) u(p− b) ≡ 1
(b− 1)!

p−2b∑
j=0

(
p− 2b

j

)
(j + b− 1) · · · (j + 1) (mod p).

To evaluate this last sum, we define the polynomial

f(x) :=
p−2b∑
j=0

(
p− 2b

j

)
xj+b−1 = xb−1(x + 1)p−2b,

and we see that the sum in (2.16) is the (b−1)th derivative of f , evaluated at x = 1.
Using Leibniz’s rule for higher derivatives of a product, along with the easy facts

dj

dxj
xb−1

∣∣∣∣
x=1

=
(b− 1)!

(b− j − 1)!

and
db−1−j

dxb−1−j
(x + 1)p−2b

∣∣∣∣
x=1

=
(p− 2b)!

(p− 3b + j + 1)!
2p−3b+j+1,

we obtain the expression

f (b−1)(1) =
b−1∑
j=0

(
b− 1

j

)
(b− 1)!

(b− j − 1)!
(p− 2b)!

(p− 3b + j + 1)!
2p−3b+j+1

= 2p−3b+1(b− 1)!
b−1∑
j=0

(
b− 1

j

)(
p− 2b

b− 1− j

)
2j .

By Fermat’s Little Theorem we have 2p ≡ 2 (mod p), and thus by changing the
order of summation we get with (2.16),

u(p− b) =
f (b−1)(1)
(b− 1)!

≡ 22−3b
b−1∑
j=0

(
b− 1

j

)(
p− 2b

b− 1− j

)
2j(2.17)

≡ 22−3b
b−1∑
j=0

(
b− 1

b− 1− j

)(
p− 2b

j

)
2b−1−j

≡ 22−3b
b−1∑
j=0

(
b− 1

j

)(
p− 2b

j

)
2b−1−j (mod p).

Finally, using the same method as in (2.15), we have(
p− 2b

j

)
≡ (−1)j

(
2b− 1 + j

j

)
(mod p),

and the sum in (2.17) (excluding the factor 22−3b) becomes, modulo p,

2b−1
b−1∑
j=0

(−1)j

(
b− 1

j

)(
2b− 1 + j

j

)
1
2j

= 2b−1P
(0,b)
b−1 (0),

where the right-hand term is obtained by comparing the left-hand sum with a
second explicit expression for the Jacobi polynomials; see, e.g., Equation (22.3.2)
in [1, p. 775]. This, together with (2.17) and (2.13), proves (2.10), and we are
done. �
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As an easy consequence we get the following extension of Theorem 2.2.

Corollary 2.2. Let p ≥ 3 be a prime and m,a positive integers with p+1
2 ≤ a ≤

p− 1. Then

(2.18) u(mp + a) ≡ w(m + 1)u(a) (mod p).

In particular, we have for all 0 ≤ a ≤ p− 1,

(2.19) u(3p + a) ≡ u(3)u(a) (mod p).

Proof. Since b := p − a satisfies the conditions of Theorem 2.3, using (2.11) and
then (2.10) in the form w(p− a) ≡ 23(p−a)−2u(a) (mod p), we obtain

u(mp + a) = u((m + 1)p− (p− a))

≡ w(m + 1)22−3(p−a)w(p− a) (mod p)

≡ w(m + 1)u(a) (mod p).

Since w(4) = 8 = u(3), we get (2.19) from (2.18) and (2.7). �

Remark. Congruences of the type (2.8) and (2.9) have been studied in a more
general setting by McIntosh [19]

3. Composite solutions of (1.5)

As mentioned in the introduction, it is one of the purposes of this paper to
study counterexamples to the converse of the “Wolstenholme analogue” given by
the congruence (1.5), i.e., we wish to study those composite integers n for which

(3.1) u(n) ≡ −1 (mod n3)

holds. A numerical search for n ≤ 4 · 106 showed that the only composite solutions
of (3.1) have exactly two prime divisors, one of which is always 2 or 5; see Table 1.
For some remarks on the computations, see the final section.

n factored n factored n factored n factored
10 2 · 5 4258 2 · 2129 10378 2 · 5189 20546 2 · 10273
25 52 5186 2 · 2593 10786 2 · 5393 20642 2 · 10321
146 2 · 73 7745 5 · 1549 10826 2 · 5413 20738 2 · 10369
586 2 · 293 8258 2 · 4129 10834 2 · 5417 32834 2 · 16417
2186 2 · 1093 8354 2 · 4177 10898 2 · 5449 32906 2 · 16453
2386 2 · 1193 8458 2 · 4229 16418 2 · 8209 33322 2 · 16661
2594 2 · 1297 8714 2 · 4357 16546 2 · 8273 33505 5 · 6701
2642 2 · 1321 8746 2 · 4373 16706 2 · 8353 33802 2 · 16901
4162 2 · 2081 8842 2 · 4421 17026 2 · 8513 34058 2 · 17029
4226 2 · 2113 10306 2 · 5153 17674 2 · 8837 35338 2 · 17669

Table 1: The first 40 composite solutions to (3.1)

It is not surprising that the factors 2 and 5 should play a special role in the
numerical results. In fact, in addition to u(1), only u(2) and u(5) are equal to −1,
at least up to 4 · 106. Since Theorem 2.1 gives, for primes p ≥ 5,

u(2p) ≡ u(2) = −1 (mod p3),
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the Chinese Remainder Theorem implies that the congruence (3.1) holds for n = 2p
if and only if we have

(3.2) u(2p) ≡ −1 (mod 8).

Similarly we have, again by Theorem 2.1,

u(5p) ≡ u(5) = −1 (mod p3),

and by the Chinese Remainder Theorem we see that (3.1) holds for n = 5p if and
only if u(5p) ≡ −1 (mod 53), which by Theorem 2.1 can be reduced to

(3.3) u(p) ≡ −1 (mod 125).

While in the next section we are able to completely characterize the primes p
satisfying the congruences (3.2), the case of (3.3) remains unsolved; see Section 6
for some further remarks.

4. The case u(2p)

In order to characterize the solutions of the congruence (3.2), we will first reduce
it to a congruence involving a single binomial coefficient. Although only congruences
modulo 8 are required, we prove slightly more.

Lemma 4.1. For any integer m ≥ 1 we have

(4.1) u(2m) ≡
(

6m

2m

)
(mod 16),

and when m is odd,

(4.2) u(m) ≡
(

3m

m

)
(mod 4).

Proof. For odd positive integers k < 2m, consider(
2m

k

)
=

2m

k

(
2m− 1
k − 1

)
,

(
4m

k

)
=

4m

k

(
4m− 1
k − 1

)
.

We see that the first expression is always even, and the second one is always divisible
by 4. Hence we have

(4.3) 2
(

2m

k

)(
4m

k

)
≡ 0 (mod 16), k = 1, 3, . . . , 2m− 1,

and if we add all these terms to the sum in (1.4) with n = 2m, we obtain

(4.4) u(2m) ≡
2m∑
k=0

(
2m

k

)(
4m

k

)
(mod 16).

Now the right-hand side of (4.4) has the closed form expression
(
6m
2m

)
, which is a

special case of the Vandermonde convolution; see, e.g., [10, p. 22]. This completes
the proof of (4.1). The proof of (4.2) is identical with the exception that in (4.3)
we have divisibility only by 4. �



A BINOMIAL SUM RELATED TO WOLSTENHOLME’S THEOREM 9

Combining (4.1) and (3.2), we therefore need to know for which integers m ≥ 1
(not necessarily prime at this point) we have

(4.5)
(

6m

2m

)
≡ −1 (mod 8).

We begin with a lemma. For the remainder of this section, let (m)2 denote the
binary representation of m, written from right to left; e.g., (20)2 = 10100.

Lemma 4.2. (a) The binomial coefficient
(
3m
m

)
is odd if and only if the binary

expansion of m has no two consecutive 1s.
(b) If

(
3m
m

)
is even, then it is divisible by 4.

Proof. Suppose that (m)2 has no two consecutive 1s. Then (3m − m)2 = (2m)2
is the same as (m)2, but shifted by one bit to the left. Hence in adding the two
there is no carry if and only if there are no consecutive 1s, which proves (a), by
Lemma 2.1(a). If there are consecutive 1s, then it is obvious that there are at least
two carries, and this proves (b). �

As an aside, we obtain the following easy divisibility properties from Lemmas 4.1
and 4.2. Note that any positive integer of the form 4k+3 has a binary representation
ending in 11.

Corollary 4.1. For all integers k ≥ 0 we have 4 | u(4k + 3), and there are no
integers n ≥ 2 with u(n) ≡ 2 (mod 4).

Next we need a special case of a result in [12]. Let 0 ≤ r ≤ n be integers with
binary representations

(n)2 = alal−1 . . . a1a0, (r)2 = blbl−1 . . . b1b0,

and set

E1 :=
l−1∑
i=0

ai+1ai=11

(bi+1 + bi), E2 :=
l−2∑
i=0

ai+2ai=11

(bi+2 + bi).

Lemma 4.3 (Huard et al.). Let l ≥ 2, a1a0 6= 11, and suppose that
(
n
r

)
is odd.

Then

(4.6)
(

n

r

)
≡ (−1)E15E2 (mod 8).

This result can be found in [12, p. 51]; the authors of that paper call (4.6) a
“Davis-Webb congruence (mod 8)”, after [5], where similar congruences modulo 4
were derived. We are now ready to prove the main result of this section.

Theorem 4.1. For an integer m ≥ 1 the congruence (4.5) holds if and only if the
binary representation of m (padded right and left with 0s) has no adjacent 1s and
has

(a) an odd number of strings 00100 or 00101. . .0100, and
(b) an even number of strings 010010.

Proof. It is easy to see that the right-hand side of (4.6) is congruent to −1 (mod 8)
if and only if E1 is odd and E2 is even. We use Lemma 4.3 with r = 2m and
n = 6m. Then the condition a1a0 6= 11 is clearly satisfied, and by hypothesis and
Lemma 4.2(a) we know that

(
6m
2m

)
is odd.
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Let us first consider the sum E1. For each 1 in (2m)2 we have bi = 1, bi+1 = 0,
and ai+1ai = 11; hence the string 00100 is counted exactly once. If we have
a string 00101. . .0100 in (2m)2, then the corresponding string 011111. . .100 in
(6m)2 always has an even number of consecutive 1s. But this means that in E1

an odd number of pairs ai+1ai = 11 sweeps over this string, and for each of these
pairs we have exactly bi+1 + bi = 1. Hence each string 00101. . .0100 gives an odd
contribution to E1, and this proves (a).

Next we consider the sum E2. We can have ai+2ai = 11 in two different
cases: (i) we have a string 00101. . .0100 in (2m)2, with the corresponding string
011111. . .100 in (6m)2. Then the terms bi+2 + bi are either 0 or 2, so the total
contribution to E2 of such a string is even and can thus be disregarded. (ii) we
have a string 010010 in (2m)2, with the corresponding string 110110 in (6m)2. In
this case the contribution to E2 is odd, namely bi+2 = 1, bi = 0. Thus the number
of such string needs to be even, which proves (b). �

Examples: All the odd integers m < 211 that satisfy the conditions of Theorem 4.1,
and thus the congruence (4.5), are listed in Table 2. Note that the primes in this
list are exactly those (up to 211) that also appear in Table 1. We now consider two
particular cases in detail:

(i) m = p = 73; (73)2 = 1001001. We have three “isolated” 1s, (i.e., at least two
0s between it and the next 1); hence E1 is odd. We have two strings 1001, so E2

is even.
(ii) m = p = 1321; (1321)2 = 10100101001. Here we have one isolated 1 and

two strings 101, so E1 is odd. Once again we see two strings 1001, so E2 is even.

m factored m in binary m factored m in binary
1 1 1 1041 3 · 347 10000010001
5 5 101 1057 7 · 151 10000100001

21 3 · 7 10101 1089 32 · 112 10001000001
73 73 1001001 1093 1093 10001000101
85 5 · 17 1010101 1105 5 · 13 · 17 10001010001

273 3 · 7 · 13 100010001 1173 3 · 17 · 23 10010010101
293 293 100100101 1189 29 · 41 10010100101
297 33 · 11 100101001 1193 1193 10010101001
329 7 · 47 101001001 1297 1297 10100010001
341 11 · 31 101010101 1317 3 · 439 10100100101
529 232 1000010001 1321 1321 10100101001
545 5 · 109 1000100001 1353 3 · 11 · 41 10101001001

1365 3 · 5 · 7 · 13 10101010101

Table 2: Odd integers m < 211 satisfying (4.5)

The following corollary is now clear from Theorem 4.1 and the discussion at the
beginning of this section.

Corollary 4.2. The composite integer n = 2p, where p is an odd prime, is a
solution of (3.1) if and only if p satisfies the conditions of Theorem 4.1.
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5. Growth and sign patterns of u(n)

In addition to the various divisibility and congruence properties studied above
and in [4], the sequence u(n) exhibits a sign pattern and a growth that are reminis-
cent of sequences generated by linear recurrence relations; see Table 3 for the first
30 values of u(n). In this section we shall explain this behavior.

1. Computation. It is well known that the WZ algorithm (see, e.g., [22]) can be
applied to many binomial sums to obtain closed formulas or recurrence relations.
We have used the computer algebra system Maple 9.5 (the current version at the
time of writing is Maple 11 [18]), which contains an implementation of the WZ
algorithm, to obtain the recurrence relation

2(7n + 4)(2n + 3)(n + 2)u(n + 2) + (91n3 + 325n2 + 368n + 128)u(n + 1)(5.1)

+16(7n + 11)(2n + 1)(n + 1)u(n) = 0.

This relation can be used to quickly compute the terms u(n). However, the main
limitation lies in the fact that even if only modular properties are investigated
(such as (3.2) or (3.3)), the recurrence relation (5.1) does not reduce to a modular
analogue. As we shall see below, the growth of the u(n) is exponential, and above
about n = 4 · 106 the terms become prohibitively large, even though no more than
three need to be stored at any given time. The computations were done with
Maple 9.5. Up to our search limit of n = 4 · 106 the only composite solutions to the
congruence (3.1), 1145 in all, were of the form 2p or 5p, where p is a prime. Contrary
to the impression given by Table 1, solutions of the form 5p (646 in number) are
more abundant than the 500 solutions of the form 2p; the first composite solution,
n = 2 · 5, is counted in both categories.

n u(n) s(n) n u(n) s(n) n u(n) s(n)
0 1 + 10 -7001 - 20 159116983 +
1 -1 + 11 9316 - 21 -155628353 +
2 -1 - 12 22276 + 22 -720492928 -
3 8 - 13 -138412 + 23 3481793888 -
4 -17 - 14 268568 + 24 -5558713852 -
5 -1 + 15 189008 - 25 -9029921876 +
6 116 + 16 -2608913 - 26 71541001076 +
7 -344 + 17 6809417 - 27 -158672882224 +
8 239 + 18 -1814851 - 28 -45300345128 -
9 1709 - 19 -45852416 + 29 1370202238072 -

Table 3: The first 30 values of u(n); s(n) := sign((−1)nu(n))

2. Growth and Asymptotics. If we divide both sides of (5.1) by 7n3, we see that
the coefficients of the recurrence relation converge to 4, 13, and 32, respectively.
The characteristic equation for (5.1) is therefore

(5.2) 4x2 + 13x + 32 = 0,

with roots

(5.3) α =
−13 + i7

√
7

8
, α =

−13− i7
√

7
8

,

and obviously |α| = |α| = 2
√

2. It is well known that the behavior of sequences
of the type (5.1) can be determined by considering the roots of their characteristic
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equations. Unfortunately, since (5.2) does not have a dominating root, the classical
theorems of Poincaré and Perron (see, e.g., [13] or [14]) do not apply. Also, conver-
gence of the coefficients of (5.1) (when divided by 7n3) to the coefficients of (5.2) is
not fast enough to allow the use of some strong results, such as those in [14, Ch. 6].
However, we are able to apply Theorem 5 in [15] which gives the following result.

Corollary 5.1. There exist two linearly independent solutions {u(1)
n }, {u(2)

n } of the
recurrence relation (5.1) such that

lim
n→∞

u
(1)
n+1

u
(1)
n

= α, lim
n→∞

u
(2)
n+1

u
(2)
n

= α.

A much stronger result was recently obtained by R. Noble [21] who used a
generalized Riordan array related to the binomial sum u(n) and applied methods
of [23].

Theorem 5.1 (R. Noble). The sequence {u(n)} satisfies the asymptotic expansion

(5.4) u(n) =
dαn

√
n

(
1 +

c1

n
+

c2

n2
+ . . .

)
+

dαn

√
n

(
1 +

c1

n
+

c2

n2
+ . . .

)
,

with certain complex numbers c1, c2, . . ., and

(5.5) d =
1

71/4
√

π
ei arctan(8−3

√
7).

It is easy to see from (5.3) that the argument of α is π − arctan( 7
√

7
13 ). If we set

d = |d|eiδ and α = 2
√

2ei(π−θ), where θ := arctan( 7
√

7
13 ), then we have

d(−α)n + d(−α)n = 2|d|23n/2 cos(δ − nθ),

and therefore, with (5.4) and (5.5),

(5.6) (−1)nu(n) =
2

71/4

23n/2

√
πn

cos
(
n arctan( 7

√
7

13 )− arctan(8− 3
√

7)
)(

1 + O( 1
n )

)
.

The identity (5.6) immediately gives an indication of the growth of the sequence
{u(n)}. The period of the sign pattern of (−1)nu(n) is also easy to determine as
2π/θ ' 6.55336, which is consistent with Table 3.

6. Some open problems

1. Given that we were able to find a complete characterization of the primes p
for which 2p is a solution of (3.1), it would be desirable to have a corresponding
characterization of those p for which 5p solves (3.1). In Section 3 we saw that
this is equivalent to p solving (3.3). The first sixteen such primes are 2, 5, 1549,
6701, 7699, 8527, 8929, 9043, 10243, 10459, 13963, 14249, 14369, 15349, 15877, and
19739. These are all such primes up to 20 000; there are a total of 646 up to 4 · 106.

It seems natural to consider the base-5 representation of these primes. However,
there is no apparent pattern, and a reduction similar to the one that leads to (4.5)
does not seem to be possible.

2. Are there infinitely many primes that satisfy conditions (a) and (b) in The-
orem 4.1? This would imply that there are infinitely many composite solutions of
(3.1). This problem appears to be of a similar level of difficulty as the question of
the infinitude of Mersenne (111. . .11 in binary) or Fermat primes (100. . .01).
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3. Are there solutions of the form n = qp, with q a prime other than 2 or
5? Such solutions would be likely if there were a prime q > 5 with u(q) = −1; see
Section 3. The question of multiplicity of a linear recurence sequence (with constant
coefficients) is a difficult one, and there are numerous deep results, especially for the
ternary case; see [8, Section 2.2] for results and references. Since by Corollary 5.1 the
behavior of the sequence u(n) is similar to that of the corresponding sequence with
constant coefficients (namely the coefficients in (5.2)), with even greater similarity
conjectured in (5.4), one would expect that there are at most finitely many q with
u(q) = −1. It seems safe to conjecture that there will be no others beyond q = 5.

4. Are there solutions of (3.1) with three or more prime factors? Our calculations
lead us to conjecture that there are none.
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