Newton’s Method without Division

Jeffrey D. Blanchard and Marc Chamberland

Abstract. Newtons’s Method for root-finding is modified to avoid the division step while
maintaining quadratic convergence.

1. INTRODUCTION. Newton’s Method is the most well-known superlinear method
for root-finding. If z* is a root of the smooth function f : C — C, f'(z*) # 0, and z,
is sufficiently close to x*, then the iterative scheme

$n+1 =Ty — f/(fl’)
n

)]

converges quadratically to the root. This means thatif €¢,, = x,, — «*, then€¢,, — 0 and
there exists a constant C' such that e, ;| < C|e,|? for all n. In non-technical terms,
this means that the number of digits of accuracy roughly doubles with each iteration.
Newton’s Method is not without its challenges: it can fail spectacularly if the initial
guess is not sufficiently close to a root and each step requires a fresh evaluation of both
f(x) and f’(x). In comparing various root-finding algorithms, factors to consider in-
clude rates of convergence, the number of function evaluations, the required smooth-
ness of the function, the challenge of making initial guesses, the cost of arithmetic
operations, the amenability of parallel processing, and the ease of implementation.

An important application of Newton’s Method is to compute the reciprocal of a
number. To calculate z* = 1/a, note that =* is a root of the function f(z) = 1/z — a.
Applying (1) to this function leads to the iterative scheme'

Tpr1 = Tn(2 — ax,,). 2)

Since this division algorithm was created with Newton’s Method, arbitrarily accurate
division can be accomplished quadratically with only multiplication, addition, and sub-
traction. Indeed, using Newtons method to calculate multiplicative inverses forms the
basis of many implementations of the division process in a vast number of computer
processors; see [14].

Reflecting back on Newton’s Method itself, equation (1) has a curious feature: each
iteration of the Newton scheme employs a division step. Specifically, each iteration
must calculate 1/ f/(z), which itself requires several iterations. Since each iteration
of Newtons Method only approximates a root of f(x), a highly precise calculation of
the reciprocal within each iteration may be wasteful. We can instead approximate the
reciprocal with a single step of the division algorithm. Consider the following two-step
Division-free Newton’s Method:

Yny1 = yn(2 - f/(xn)yn)v (3)
Tnt1 = Ty — Yn1 S (20). 4

!'To implement this iterative scheme on a computer, it is better to write it as
T+l = Tn + Zn(l — azyp)

to avoid cancellation errors.

Accepted, June 2022 1

Equation (3) approximates 1/ f’(x,,) with one step of (2), which is subsequently used
for the Newton step (4). If f'(z*) # 0, define y* = 1/ f'(z*). The point (z*,y*) is
a fixed point of the system (3)—(4). Choosing x; as an initial guess to =* and yy =
1/f'(xg), we want to see how quickly this initial point approaches the fixed point.

This idea of approximating the division step has been used in one narrow but impor-
tant application, namely, in calculating square roots. The so-called Babylonian Method
for computing the square root of a positive, real number S starts with an initial guess
xo > 0, then employs the iterative scheme

1 S
Tpt1 = 5 <$n +) (5)

T

successively to build better approximations. The intuition behind this formula is that if
z, > /S (respectively “<”), then S /x, < VS (respectively “>") and the average of
these two values will better approximate \/S. The iteration (5) is alternatively seen as
an instance of Newton’s Method with the function f(z) = 2? — S and can be written
as

n

2 -8
LTpil = Ty — 2 .
n

Decades ago [4, pp.226-227], [11, pp.92-94], it was realized that 1/ V'S could be
calculated by applying Newton’s Method to the function f(x) = 1/2? — S, resulting
in the division-free iterative scheme

1—Sa2

':Un—l-l = Tp + Tp 2

This quadratically-converging iterative scheme generates an approximation to 1/ V'S
which, when multiplied by .S, produces v/S. In contrast, (3)—(4) can be applied directly
to f(z) = 2* — S to produce a division-free iterative scheme. The division operation
in this procedure is replaced with only one step of the division algorithm (2). If x; is
the initial guess to \/S, define 1 = 1/(2x,), the reciprocal of f'(z). The two-step
iterative scheme becomes

Yny1 = yn(z - 2%%)7

Tni1 = Tn — (@5 — S)Yni1-

As with Newton’s Method, the terms x,, are intended to approach \/§ The terms
Y, approximate 1/(2z,) and so are intended to approach 1/(2v/S). This modified
approach for calculating square roots is credited to Arnold Schonhage and has been
called coupled Newton iteration [1, pp.146—149]. Although this technique has been
hailed as faster than other square root procedures, a mathematical analysis could not
be found.

The goal of this paper is to explore the division-free adaptation (3)—(4) of Newton’s
Method. Most significantly, we show that the division-free scheme preserves quadratic
convergence. Note that this technique applies to finding simple roots of any smooth
function and requires no special insight into the function’s structure.

2 Accepted, June 2022

2. EXPLORATIONS. To motivate the main theorem, we study the simple problem
of finding the unique real root x* of the function f(z) = 2 — 2 — 1, which is ap-
proximately 1.46557. We first explore the convergence with Newton’s method, using
the initial guess 2y = 1.4. Table 1 shows approximations for the gap between x,, and
x* and the coefficient of (z, — z*)/(x,_1 — 2*)*. As expected, the doubling pow-

Table 1. Newton iterates with f(x) = 23 — 22 — 1 and initial guess 1.4.

n| z,—z" | (x, —2%)/(x,_1 — x%)?
1 | 4.558e-3 1.060
2 | 1.997e-5 0.961
3 | 3.857e-10 0.966
4 | 1.439¢-19 0.967
5 | 2.002e-38 0.967
6 | 3.878e-76 0.967

ers of ten appearing in the second column manifest the quadratic convergence. This
suspicion is further evidenced by the convergence of the values in the last column.

In contrast, apply the division-free method (3)-(4) to the same function. Using
xo = 1.4 and yo = 1/f'(z0), Table 2 mimics the earlier calculations. A cursory

3

Table 2. Division-free Newton iterates with f(z) = 2% — 22 — 1 and initial guess 1.4.

n| x,—2" | (x,—2%) /(1 —2%) | (x, — %) /n(x,_1 — 2)?
1 | 4.558e-3 1.060 1.060
2 | 1.227e-4 5.908 2.954
3 | 1.324e-7 8.783 2.927
4 | 2.067e-13 11.783 2.945
5 | 6.308e-25 14.764 2.952
6 | 7.055e-48 17.728 2.954

glance at the exponents in the second column again suggests quadratic convergence,
although the doubling of digits of accuracy seems to lag. Also, the apparent lack of
convergence of the coefficients in the third column suggests the convergence might
not be quadratic. A closer look at the third column is even more suggestive: the differ-
ence between successive terms seems to approach a constant, roughly 2.9. This leads
to a slightly weaker concept of convergence speed: letting €,, = x,, — =¥, we say the
sequence {x,,} converges quasi-quadratically to x* if there exists a constant C' such
that |€,.1| < Cnle,|?. The fourth column, simply the third column divided by n,
demonstrates the quasi-quadratic nature of the iterates. This example inspires the main
result.

Main Theorem

Let f : C — C be a twice-continuously differentiable function. If f(z*) = 0 and
f'(z*) # 0, then there is a neighborhood U C C? of (z*,1/f'(x*)) such that for
almost all (xo,yo) € U, the sequence {x,} produced by (3)—(4) converges quasi-
quadratically to T*.

Accepted, June 2022 3

The proof of the theorem is actually more explicit about the rate of convergence.
The error decay can be measured asymptotically:

1" *

f" (@) 2 (6)
2/ ()"
The proportionality constant is virtually the same as in Newtons Method, the only
difference being the factor 3n. Going back to the example with f(z) = 3 — 22 — 1,
the zero x* &~ 1.46557 has corresponding values ¢; = f/(z*) &~ 3.512555 and ¢, =
f"(x*) ~ 6.793427. The constant 3cy/2¢; ~ 2.90106 matches the observed step
size in successive quadratic coefficients one may calculate from the third column of
Table 2.

€n+1 ™ (37”L)

3. PROOF OF THE MAIN THEOREM. The iteration (3)—(4) can be rewritten as
xn—l—l == F(xnayn)a (7)
Ynt1 = G("Ena yn) (8)

where
Flz,y)=z—y2-f
G(z,y) =y(2— f'(z)y

To determine the stability of the fixed point (x*,y*), the standard procedure is to
compute the Jacobian of the transformation at this point. One finds that

z)y)f (),

(
)

Jeyy = |) gy | [0 0] o

) %(x*’y*) o —f”(CC*)/f/(CC*)Q 0 .
The eigenvalues of this matrix are both zero, so (z*,y*) is an attractive fixed point
[8, p.170]. This means that there exists a neighborhood U C C? of (z*, y*) such that
for all (zg,yo) € U, the iteration (3)—~(4) approaches (z*,y*). Additionally, the zero
eigenvalues imply that the speed of convergence is superlinear, but further analysis is

required to determine the precise rate.
Define the error terms

€n = Tn — 37*,

5n:yn_y*

The aforementioned superlinear convergence ensures that €,, and 6,, both approach
zero if €y and dy are both sufficiently small. For brevity, let ¢; = f'(z*) and ¢; =
f"(x*). This lets us write y* = 1/¢;. The Taylor series expansions of f () and f’(x)
near x = x* are

fz,) = cien + Se 4+ 0(€)

and

f(x,) = c1 + co€n + O(Gi).

4 Accepted, June 2022

Using these expansions, equation (3) lets us express ¥, 11 as

1 1 1
— + 6n+1 = < + 571) |:2 - (Cl + Ca€py + O(fi)) (+ (5n>:|
Cq Cq &S]
1 Co 2
=(—40) [l =16, — =€, +O(€) + O(€,0,)
C1 C1
1 2 Co 2
= P 105 — gen + O(€.) + O(€,0,),
1
thus producing
Gy = —c102 — %en +O(E) + O(endy), (10)
1

Using this analysis with equation (4) generates
T+ €ni1 = 2"+ €0 — Ynir1 f(2Tn)

o l 2 G 2 C2 o 3
=z + €n — <C1 - Cl(sn - C% €n + O(fn) + O(en(sn)> (Clen + 9 €n + O(En))

=z + 26—26721 + 2626, +O(€) + O(e26,),
C1

which in turn simplifies to

ut = 5on + e+ O(S) + O(EX0,). (n

The dominant terms in these expressions leave us with a nonlinear first-order system
of difference equations. The analysis would be simplified if one could combine the
variables to form a single first-order difference equation in one variable. To this end,
defining 7,, = 342 /(cq€,,) leads to

3 52
_ Cl 571+1
Tog1 = —
C2 €nt1

2
& (~e182 = e + 0() + (6
C2 <20T21631 + 0%5721671, + O<6§z) + 0(6%5”))

(Y + 1+ O(e,) + O(6,))?
1/2 47, +O(e,) + O(6,)

Any concerns about the denominator of 7y, equalling zero are easy to dispose of. If
¢y = 0, then the Jacobian matrix (9) is the zero matrix, hence the map (F, G) has
quadratic convergence at the fixed point. If €,, = 0 for some n, then the sequence
{z,} has converged to z* in a finite number of steps. These situations can therefore
be ignored for the rest of the proof.

This rearrangement of ,, 1 as a function of ,, compels us to consider the dynamics
of the rational map

_ (z41)?
B =1pts

Accepted, June 2022 5

Rational maps on the extended complex plane (the Riemann sphere) have been studied
for a century, especially over the last few decades. The ensuing analysis will make
liberal use of this well-developed theory [2].

Since H maps the extended real axis to itself, it will be instructive to graph H on
R; see Figure 1. It is also helpful to rewrite H in the form

Figure 1. Plot of y = H(x) restricted to the real axis and y = x.

3 1
Hz)=z+ -+ —F—r. 12
R e .
The map H has exactly two fixed points, easily found at z = —2/3 and z = cc.

Since H'(—2/3) = —8, the fixed point z = —2/3 is repelling. On the other hand,
H'(00) =1, s0 z = oo is a rationally indifferent fixed point. There are two critical
points of H, located at z = 0 and z = —1. The dynamics of the critical points are
telling for the dynamics in the whole plane. Note that H(—1) = 0 and, from either
equation (12) or the graph, one sees that z = 0 iterates under H to the fixed point
z = 00. However, points close to z = —o0 on the negative real axis are repelled away,
moving to the right. Since H has degree two, each point in C has two pre-images. The
graph then shows that the pre-image of the interval [—o0, 0] is itself, implying [2, p.71]
that the Julia set .J is contained in [—00, 0]. Collectively, this information implies that
there is exactly one Fatou component (it is of parabolic type [2, p.160]). In summary,
we have that almost all points in the complex plane iterate under H to infinity.

Since €,, and §,, tend to zero, we combine this with the dynamics of H to conclude
that for almost all points in U, -, tends to infinity. To be more precise, note that if a

6 Accepted, June 2022

and b are real, one finds that

3 1
H(a+1ib)=a+ -+ 7555 +ib|1— .
() 2 ((a+3)*+10?) (4((a+§)2+b2)>
This expression implies that if ,, approaches infinity, its imaginary part approaches a
constant, which in turn forces the real part to approach positive infinity. Using equa-
tion (12), a standard argument [8, p.220] shows that for almost all points in U, we

have ~,, = 37" + o(n). Returning to the earlier variables, this yields the asymptotic
approximation

62 ~ 3—n%e
24
Equation (11) lets us conclude with

c
€nt1 ~ (3n)iei
1

This asymptotic behavior allows one to construct a constant C' such that |€, 1] <

Cnle, |*. We have therefore shown that for almost all starting points in a neighborhood
of the fixed point (x*, y*), the division-free process is quasi-quadratic.

4. COMPARING THE CLASSICAL AND THE DIVISION-FREE NEWTON’S
METHODS. With the Main Theorem proven, it is natural to wonder how the division-
free method compares to Newton’s Method. Some have argued [6] that the focus on the
local convergence speed in root-finding algorithms is overemphasized because most
of the iterations involve the initial point wandering aimlessly until it gets close to
the root. However, these local results are valuable when many digits of a root are
needed, as the following examples make evident. In massive computations of 7 to
billions and trillions of digits — a record set in 2022 produced 100 trillion decimal
digits — efficient implementations of basic operations such as square roots are critical
[1]. Approximations of the Feigenbaum constant demand the accurate calculation of
bifurcation points, a computationally heavy lift that can be refined by finding the roots
of massive polynomials [4, pp.9-12]. In order to compute an approximation to the
invariant measure for Hénon mappings, finding all the tightly packed roots of some
high degree polynomials — the degree can range from a few hundred to a few thousand
— requires punishing accuracy [7]. Lastly, a study employed 64,000-digit precision
to recover the minimal polynomials of algebraic numbers connected to the Poisson
potential function [3].

We revisit the example from Section 2 with an eye to high-precision calculations.
Table 3 shows the number of steps needed for successive iterates to differ by a pre-
scribed tolerance. This data shows that the division-free Newton’s Method is competi-
tive — if one simply counts the number of iterations — with its classical counter-part.
Indeed, the division-free method seems to take at most one extra iteration. As we show,
quasi-quadratic convergence is essentially the same as quadratic convergence.

The asymptotic formula (6) implies that there is a constant C' such that |€,, ;1| <
Cnle,|?. Scaling this inequality by C' and letting e,, = |C,,| produces e,, < nez_,.
Now build a sequence of inequalities that relate e,, to eg:

€1 S 6(2)7

Accepted, June 2022 7

Table 3. Number of steps needed to converge to the real root of =3 — 2 — 1 with initial guess 1.4.

Precision Newton | Division-free
le-10 5 5
le-100 8 9
1e-1000 11 12
1e-10000 15 15
1e-100000 18 19
1e-1000000 21 22

ey < 26%

IN

22
2eh = (21217 e0) ",

3
e < 363 < (31/2321/2211/2160>2 ,

4

es < 463 < (41/2431/2321/2211/2160)2 ’

en < mel_, < <n1/2" o 21/2211/2160>2n
This produces
e, < (Peo)2n,
where P = [[>2, n'/?" is a convergent product. Note that

InP = 1%” — 0.507833922. . .,

n=1

hence
P=1.6616...< 5/3.

Put together, this implies that if ¢, < 3/5, then e,, tends to zero and
en < (5e0/3)".

This shows that quasi-quadratic convergence is essentially the same as quadratic con-
vergence.

Another important difference between these iterative schemes regards choosing the
initial guess. Even for Newton’s Method applied to cubic polynomials, one is not guar-
anteed that almost every initial point z, € C will converge to a root. For the function
f(z) = 2® — 2z + 2, there is an open set S in the complex plane where if 2y € S,
then the Newton iterates do not approach a root of f, but rather a super-attracting
2-cycle [9, 10]. A technique to find initial points that will converge to the roots of
polynomials with Newton’s Method was developed in 2001 [7]. Notwithstanding the
challenges with understanding the global dynamics of Newton’s Method, these iterates
seem more stable than those of its division-free counterpart. Revisiting the example

8 Accepted, June 2022

from Section 2, namely f(z) = x® — 2% — 1, the dynamics of the two methods differ
markedly.
For the classical method, the iteration (1) becomes

zd—x2 -1 2

Tpt1 =Ty — 5 R =Xy,
i 322 — 2z, 3

when |x,,| is large, thus the fixed point x = oo is repelling. On the other hand, the

division-free Newton’s Method (3)-(4) becomes

Yn4+1 = yn(2 - (33337, - an)yn)7

Tnt+1 = Tn — (l“i - fi = 1)¥Ynt1-
The global behavior of the classical and the division-free schemes for Newton’s
Method are illustrated in Figure 2. Each image depicts the eventual dynamics of a
given (complex) initial value using the two different methods for the map f(x) =
2% — 22 — 1. The basin of attraction of each of the three roots is colored in shades
of red, green, or blue?. Color saturation indicates the number of iterations required,
where black points do not converge within 2000 iterations. The left image was cre-
ated using the classical method, while the right used the division-free method, where

Yo =1/ (o).

Figure 2. Basins of attraction using the classical method (left) and the division-free method (right).

Using the classical method, almost every starting point approaches one of the roots,
although the boundary between the basins — the Julia set — is complicated. With the
division-free method, one sees vast dark areas where the iterations failed to converge,
highlighting the sensitivity of this new scheme.

5. HIGHER DIMENSIONS. In higher dimensions, Newton’s Method applied to
smooth functions f : C"™ — C™ takes the form

Lo = T — (Df(20)) " f2n), (13)

2Color images are available in the open-access online version. In greyscale, blue is the darkest grey pre-
dominantly in the lower left, green the lightest grey in the upper left, and red the medium grey on the right-hand
side of the images.

Accepted, June 2022 9

where D f is the m X m Jacobian matrix of f. To evaluate the last term, one usually
does not compute the inverse but solves a linear system, still requiring extensive work,
including many divisions. We note, however, that the inverse of a matrix A can be
computed iteratively just like the reciprocal was solved by equation (2). The iteration
takes the form

X1 = 2X, — X, AX,,. (14)

This iterative scheme for matrix inversion was first proposed by Schulz[13] (also see
[12]) and has been the object of extensive study, including for calculating the Moore-
Penrose inverse of a matrix.

As in the scalar case considered earlier, the matrix inversion can be replaced with
only one iteration of equation (14). The new process now involves the vectors z,,,
which will approach the zero of the function, and matrices y,, that approximate the
inverse of the Jacobian matrix at each step. Letting z be the initial guess for x, yg =
(D f(x))~ ", and I the m x m identity matrix, the iterative scheme becomes

Yn+1 = yn(QI - Df(xn)yn)v s5)
Tnt1 = Tp — Yn+1Tn- (16)

This process replaces matrix inversion with two matrix-matrix multiplications (or solv-
ing a linear system with two matrix-matrix multiplications and one matrix-vector mul-
tiplication).

A two-dimensional example involves the system

3sin(2z; + x9) — 1772 = (), (17)
5cos(xy + 2x2) + In(3 4+ 7x2) = 0. (18)
An approximate solutionis z; = —7.1 and zo = 4.7. Tables 4 and 5 depict the iterates

using the Newton and inverse-free methods. Like the tables from Section 2, these new
tables show the distinctions between the gaps ||z, — z*|| and the quadratic coefficients
||z, — 2*||/||2n_1 — 2*||? in the two methods (here the standard Euclidean norm is
used).

Table 4. Newton iterates for system (17)—(18) with initial guess z1 = —7.1, x2 = 4.7.
n | flzn — @[| llen — @™ [[/[[#n-1 — «™[]°
1 1.838e-2 1.675
2 2.266e-5 0.670
3| 3.631e-11 0.706
4 | 9.319e-23 0.706
5| 6.137e-46 0.706
6 | 2.661e-92 0.706
7 | 5.003e-185 0.706
8 | 1.768e-370 0.706

In a head-to-head comparison between the two methods, Table 6 shows the number
of steps needed for successive iterates to differ by a prescribed tolerance. Although
there is numerical evidence that the inverse-free method is quasi-quadratic, it is not
obvious how to generalize the proof of the main theorem to the higher-dimensional
setting.

10 Accepted, June 2022

Table 5. Inverse-free iterates for system (17)—(18) with initial guess z; = —7.1, x2 = 4.7.

n | lzn — 27 [llan — & [[/llzn_y — «*[[* | [lzn — 27[[/n[len_ — =[]
1 1.838e-2 1.675 1.675
2 9.991e-5 2.956 1.478
3 5.329¢-9 5.338 1.779
4 | 2.145e-17 7.552 1.888
5| 4.481e-34 9.738 1.947
6 | 2.391e-67 11.909 1.984
7 | 8.048e-134 14.070 2.010
8 | 1.051e-266 16.225 2.028
Table 6. Steps needed to converge for system (17)—(18) with initial guess 1 = —7.1, x2 = 4.7.
Precision | Newton | Inverse-free
le-10 4 5
le-100 8 8
1e-1000 11 11
1e-10000 14 15
1e-100000 18 18

6. CONCLUSION. A modification of Newton’s Method for root-finding has been
developed that approximates the division step while maintaining quadratic conver-
gence. Division-free Newtons’s Method completely eliminates the need for any di-
vision when searching for roots of single-variable polynomials. Numerical evidence
suggests that the technique also applies to multivariable functions. We suspect that
this division-free approach can be applied to other iterative methods.

ACKNOWLEDGMENT. The authors heartily thank Richard Brent for the insight in Section 4 connecting
quasi-quadratic convergence to essentially quadratic convergence. Sincere thanks also go the anonymous ref-
erees, particularly the reviewer who provided example code for generating the plots in Figure 2 using Dynamics
Explorer [5].

REFERENCES

1. Arndt, J., Haenel, C. (2001). Pi — unleashed. New York: Springer.

Beardon, A. F. (1991). Iteration of rational functions. Complex analytic dynamical systems. New York:
Springer.

3. Bailey, D.H., Borwein, J.M., Kimberley, J. and Ladd,W. (2017). Computer discovery and analysis of
large Poisson polynomials. Exp. Math.. 26(3):349-363.

4. Borwein,J., Bailey,D. (2008). Mathematics by experiment: Plausible reasoning in the 21st century,
second edition. Wellesley, MA: AK Peters.

5. Boyd, B., Boyd, S. (2016). Dynamics Explorer [Computer software], Retrieved from
https://sourceforge.net/projects/detool/

6. Gonnet, G. (2001). A study of iteration formulas for root finding, where mathematics, computer algebra
and software engineering meet. In: Casacuberta, C., Mir6-Roig, R.M., Verdera, J., Xambd-Descamps, S.
eds. European Congress of Mathematics, Vol. 202. Boston, MA: Birkhiuser, pp. 143-156.

7. Hubbard, J., Schleicher, D. and Sutherland, S. (2001). How to find all roots of complex polynomials by
Newtons method. Invent. Math.. 146(1):1-33.

8. Kelley,W., Peterson,A. (2001). Difference equations. An introduction with applications, 2nd ed. San
Diego: Harcourt/Academic Press.

9. McMullen, C. (1987). Families of rational maps and iterative root-finding algorithms. Ann. of Math..
125(3):467-493.

Accepted, June 2022 11

10. McMullen, C. (1988). Braiding of the attractor and the failure of iterative algorithms. Invent. Math..
91(2):259-272.

11. Muller, J.-M. (2006). Elementary Functions: Algorithms and Implementation, 2nd ed. Boston, MA:
Birkhauser.

12. Pan, V., Reif, J. (1985). Efficient parallel solution of linear systems. In: Proceedings of the 17th ACM
Symposium on Theory of Computing, December 1985, available at:
https://dl.acm.org/doi/10.1145/22145.22161

13. Schulz, G. (1933). Iterative Berechnung der Reziproken matrix. Z. Angew. Math. Mech.. 13(1): 57-59.

14. Soderquist, P., Leeser, M. (1997). Division and Square Root: Choosing the Right Implementation. IEEE
Micro 17(4): 56-66. doi:10.1109/40.612224.

JEFF BLANCHARD (MR Author ID: 856216) is an associate professor of mathematics at Grinnell College.
He has been an NSF International Research Fellow, a Project NExT Fellow, and a Harris Faculty Fellow. His
primary research areas are compressed sensing, sparse approximation, and high performance computing with
graphics processing units.

MARC CHAMBERLAND (MR Author ID: 335642) is the Myra Steele Professor of Mathematics at Grinnell
College. He has published research in diverse areas such as differential equations and number theory, and his
work is often colored by experimental mathematics. His attempts to popularize mathematics include the 2015
book Single Digits (Princeton) and the YouTube channel Tipping Point Math.

Grinnell College, Grinnell, IA 50112
blanchaj@ grinnell.edu
chamberl@grinnell.edu

12 Accepted, June 2022

