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Abstract—Five known greedy algorithms designed for the
single measurement vector setting in compressed sensing and
sparse approximation are extended to the multiple measurement
vector scenario: Iterative Hard Thresholding (IHT), Normalized
IHT (NIHT), Hard Thresholding Pursuit (HTP), Normalized
HTP (NHTP), and Compressive Sampling Matching Pursuit
(CoSaMP). Using the asymmetric restricted isometry property
(ARIP), sufficient conditions for all five algorithms establish
bounds on the discrepancy between the algorithms’ output and
the optimal row-sparse representation. When the initial multiple
measurement vectors are jointly sparse, ARIP-based guarantees
for exact recovery are also established. The algorithms are then
compared via the recovery phase transition framework. The
strong phase transitions describing the family of Gaussian matri-
ces which satisfy the sufficient conditions are obtained via known
bounds on the ARIP constants. The algorithms’ empirical weak
phase transitions are compared for various numbers of multiple
measurement vectors. Finally, the performance of the algorithms
is compared against a known rank aware greedy algorithm, Rank
Aware Simultaneous Orthogonal Matching Pursuit + MUSIC.
Simultaneous recovery variants of NIHT, NHTP, and CoSaMP
all outperform the rank-aware algorithm.

Index Terms—Compressed sensing, greedy algorithms, mul-
tiple measurement vectors, joint sparsity, row sparse matrices,
performance comparison

I. INTRODUCTION
A. Joint Sparse Recovery of Multiple Measurement Vectors

The single measurement vector (SMV) formulation is now
standard in sparse approximation and compressed sensing
literature. For m < n, x € R", A € R™*" and y = Ax €
R™, one seeks to recover the signal or vector x from the
measurements y when the linear measurement process defined
by A is known. While this problem is NP-hard in general [1],
if A is chosen wisely and z is sparse, several reconstruction
algorithms are known to guarantee exact recovery of =x.
When zx is not exactly sparse, but instead has a good sparse
approximation, or when the measurements y are corrupted by
noise, bounds on the recovery error are also known.

A natural extension of this problem is the multiple mea-
surement vector (MMV) problem where a single matrix A
is utilized to obtain measurements of multiple signals: y; =
Axy,ys = Axg,...,y; = Ax;. Rather than recovering the
l signals separately, one attempts to simultaneously recover
all [ signals from the matrix formulation ¥ = AX where
X = [z1]aa] - |2] and thus YV = [y1|yz2| - - - |yi]- When the
target signals, {x;}!_,, are all predominantly supported on a
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common support set, this approach can lead to a computational
advantage [2], [3]. If the cost per iteration of one run of the
simultaneous recovery algorithm is no worse than / runs of an
equivalent SMV algorithm, the common support set provides
more information to the simultaneous recovery algorithm than
running [ independent instances of an SMV algorithm.

B. Prior Art and Contributions

Beginning with Leviatan, Lutoborski, and Temlyakov [4],
[5], [6], a substantial body of work has been developed
for the MMV problem including [7], [8], [9], [10], [11],
[12], [13], [14]. The majority of the literature focuses on
relaxations, mixed matrix norm techniques, and variants of
orthogonal matching pursuit. Tropp et al. [3], [15] introduced
simultaneous recovery algorithms based on Orthogonal Match-
ing Pursuit (OMP) and convex relaxation. For the greedy
algorithm, Simultaneous OMP (SOMP), Tropp et al. stated
that the analysis of the MMV recovery algorithm permitted
a straightforward extension of the analysis from the SMV
setting. Foucart applied these “capitalization” techniques to
Hard Thresholding Pursuit (HTP) to extend that algorithm to
the MMV setting [2], [16].

In this article, we provide a comprehensive investigation
of the extension to the MMV problem of five known greedy
algorithms designed for the SMV setting: Iterative Hard
Thresholding (IHT) [17], Normalized IHT (NIHT) [18], Hard
Thresholding Pursuit (HTP) [16], Normalized HTP (NHTP)
[16], and Compressive Sampling Matching Pursuit (CoSaMP)
[19]. The article includes:

e a description of the simultaneous joint sparse recovery

algorithms (Section II-B);

« sufficient conditions based on the asymmetric restricted
isometry property which guarantee joint sparse recovery
and bound recovery error for joint sparse approximation
(Section II-C);

e a quantitative comparison of the theoretical sufficient
conditions through the strong recovery phase transition
framework (Section III-A);

e an empirical, average case performance comparison
through the weak recovery phase transition framework
(Section III-B);

e an empirical, average case performance compari-
son against a known rank-aware algorithm RA-
SOMP+MUSIC (Section III-C).

The MMV algorithms Simultaneous IHT (SIHT), Simul-
taneous NIHT (SNIHT), Simultaneous HTP (SHTP)!, Si-
multaneous NHTP (SNHTP), and Simultaneous CoSaMP
(SCoSaMP) are natural extensions of the well-known SMV

I'This algorithm and its associated convergence guarantee were originally
presented by Foucart [2]
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versions of the algorithms and reduce to the SMV versions
when applied to the measurements of a single sparse vector.
While the analysis closely follows the MMV extension tech-
niques of Tropp et al. [3], [15] and the proofs closely follow
the analysis of Foucart for the SMV versions of the algorithms
[20], the convergence analysis provides three generalizations.
The results are written in terms of the asymmetric restricted
isometry constants [21] thereby providing weaker sufficient
conditions than those derived with the standard, symmetric
restricted isometry constants. Since empirical testing [22]
suggests tuning the step size in SIHT and SHTP according
to family from which A is drawn, the analysis permits an
arbitrary fixed step size between O and 1. Finally, the results
for the normalized algorithms NIHT and NHTP are stated
explicitly.

These sufficient conditions are quantitatively compared by
employing the techniques for the strong recovery phase tran-
sition framework of [21], [23]. The strong phase transitions
associated with the sufficient conditions identify two important
facts. First, simpler algorithms often admit a simpler analysis
which yield more relaxed sufficient conditions even though the
algorithms may have inferior observed performance. Second,
the sufficient conditions obtained via the restricted isometry
property are exceedingly pessimistic and apply to a regime
of problems unlikely to be realized in practice. While critical
to understanding the theoretical behavior of the algorithms,
the pessimistic, worst-case sufficient conditions fail to inform
practitioners about typical algorithm behavior. From this point
of view, the empirical average-case performance comparisons
provide the most important information for selecting an algo-
rithm for application.

C. Organization

The algorithms are detailed in Section II-B with the joint
sparse recovery guarantees provided in Section II-C. In Sec-
tion III-A, the theoretical sufficient conditions for each of
the algorithms are compared via the strong phase transition
framework [21], [23]. In Section III-B, the average case
performance of the algorithms is then compared via empirical
weak recovery phase transitions similar to other empirical
studies [22], [24]. In Section III-C the typical performance
of these “rank blind” algorithms is then juxtaposed with
the performance of the “rank aware” greedy algorithm Rank
Aware SOMP + MUSIC [9], [25], [12].

As the convergence analysis leading to Theorem 1 closely
follows the techniques of Foucart [20], a representative proof
for SIHT and SNHTP is provided in Appendix A. For com-
pleteness, all omitted proofs are available in the supplementary
material [26]. The supplementary material also includes the
analysis required to employ the strong phase transition tech-
niques of [23] and additional empirical performance compar-
isons with measurements obtained from randomly subsampled
discrete cosine transforms.

II. RECOVERY GUARANTEES

A. Notation

Let M(r,c) denote the set of matrices with r rows and ¢
columns with entries drawn from R or C. If X is a collection

of [ vectors in R™ or C", then X € M(n,[) and we let X;
denote the ith row of X while X; represents the ¢th column.
Let S C {1,...,n} be an index set and define X(g) as the
matrix X restricted to the rows indexed by this set; in other
words, the entries in the rows indexed by S remain unchanged
while all other rows of X g) have all entries set to 0. The linear
measurement process is defined by a matrix A € M (m,n) and
the restriction Ag represents the sub-matrix of A obtained by
selecting the columns of A indexed by S. A* denotes the
conjugate transpose of A.

Throughout the manuscript, the row support, or simply
support, of a matrix Z € M (n,l) is the index set of rows
which contain nonzero entries. Thus, when X is a collection
of [ column vectors, X = [X;|X5]|...|X;], we have

l
supp(X) = U supp(X;).

The matrix X is k-row sparse (or the set {X; :i=1,...,1}
is jointly k-sparse) if |supp(X)| < k. In particular, if || is the
cardinality of the index set S, then X g) is |S|-row sparse. Let
Xn,i(k) C M(n,l) be the subset of k-row sparse nx[ matrices;
the set of k-sparse column vectors will be abbreviated x,, (k).
The MMV sparse approximation problem is equivalent to
constructing a row sparse approximation of a matrix X from
the measurements Y = AX. Consider first the ideal case of
measuring a k-row sparse matrix X € x,,;(k) where T =
supp(X). Given the measurements Y = AX € M(m,l), the
task is to exactly recover the k-row sparse matrix X = X 7.
This is equivalent to simultaneously recovering [ jointly k-
sparse vectors. This ideal setting of attempting to recover
a perfectly row sparse matrix from clean measurements is
unlikely to present itself in applications. Instead, the task
will be to find an accurate row sparse approximation to a
matrix X € M(n,[). Suppose T is the index set of rows of
X € M(n,l) which have the k largest row-{3-norms, and the
measurement process is corrupted by additive noise, namely
Y = AX + E for some noise matrix £ € M(m,l). The
row sparse approximation problem seeks an approximation to
X (7). The recovery guarantees are presented in terms of the
Frobenius norm of the discrepancy between the algorithms’
output X and the optimal k-row sparse approximation X (.
The Frobenius norm of a matrix X € M (n,l) is defined by

l l n
X% =D 1X505 =D > 1x,*
j=1

j=1i=1

B. Greedy MMV Algorithms

To solve the MMV or row sparse approximation problem,
we propose the extension of five popular greedy algorithms
designed for the SMV problem: IHT, NIHT, HTP, NHTP,
and CoSaMP. Each of these algorithms is a support iden-
tification algorithm. The simultaneous recovery algorithms,
prefixed with the letter S, are defined in Algorithms 1-3. Each
algorithm follows the same initialization procedure. The initial
approximation matrix is the zero matrix X° = 0 and thus the
initial residual is the matrix of input measurements R° =Y.
When an initial proxy for the support set is needed, 7° =
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DetectSupport(A*Y, k) where DetectSupport(Z,s)
is a subroutine identifying the index set of the rows of Z
with the s largest row-¢3-norms. In Algorithms 1 and 3, the
thresholding operator Threshold(Z, S) restricts the matrix
Z to the row index set S, i.e. Z(g) = Threshold(Z,S).
The choice of stopping criteria plays an important role for
the algorithms, and the stopping criteria employed for the
empirical testing are outlined in Section III-B.

Algorithm 1 SIHT / SNIHT

1: for iteration ;j until stopping criteria do
if (SIHT) then

W =w
else if (SNIHT) then

H(A R7_ )(TJ 1)”F
HAT] l(A RI-

3

4

5 w =
)(T] 1)HF
6: end if

7 XI = X014 (AR

8: T9 =DetectSupport (X7, k)
9: XJ = Threshold(X7,TY)

10 R =Y - AXJ

11: end for
12: return

X = XJ" when stopping at iteration j*.

Algorithm 2 SHTP / SNHTP

1: for iteration j until stopping criteria do
if (SHTP) then

wj = w
else if (SNHTP) then

”(A R’ 71)(T7 l)HF
[Ags—1 (A*RI=

»

wl =
end if
X7 = X7t 4 i (A*RIT)
TJ = DetectSupport (X7, k)
X7 =argmin{||Y — AZ||F : supp(Z) C T7}
1. R =Y-AXJ
11: end for
12: return X = X7°

)(TJ 1)”F

R A A

when stopping at iteration j*.

In iteration j, SIHT and SHTP update the previous approx-
imation X7/~! by taking a step of predefined, fixed length w
in the steepest descent direction A*R’~!. A new proxy for
the support set, 77, is then obtained by selecting the rows
of XJ with greatest row-fo-norms. The two algorithms differ
in how the support proxy 77 is utilized: SIHT employs a
hard thresholding operator which restricts the approximation
X7 to the rows indexed by 77 while SHTP projects the
measurements Y onto the support set T7.

The normalized variants of these two algorithms, SNIHT
and SNHTP, proceed in a nearly identical fashion although
the potentially inaccurate fixed step size is replaced by a near-
optimal step size w’. If 79 = T7~1 and T7 contains the
support set T' of the measured row-sparse matrix X = X7,
the normalized step-size

[(A*RI=Y) (1i-1) 1%
| Agsi—1 (A*RI=Y) (i1 |3

w! =

is optimal in terms of minimizing the norm of the residual
R7. When elements of the support T' of the measured matrix
X = X(r) are missing from the current support proxy T7,
the step-size is nearly optimal in the sense that the unknown
error in the step size is exclusively determined by the missing
elements T\7”. In other words, when considering minimizing
the norm of the residual
R =Y — AX 15y = A( X1y — X(14)),

the optimal step size is not computable without oracle infor-
mation regarding the new support proxy 77 and the support
T of the target matrix X = X(r).

Algorithm 3 SCoSaMP
1: for iteration ;j until stopping criteria do

2. S7 =DetectSupport(A*RI~L 2k)

32 QP=T"tuss

4 UJ =argmin{||Y — AZ||r : supp(2) C Q’}
5: T = DetectSupport (U’ k)

6: X’/ = Threshold(U’,T7)

77 RI=Y - AXJ

8: end for

9: return X = X7 when stopping at iteration j*.

SCoSaMP is also a support identification algorithm but
takes a fundamentally different approach to constructing the
approximation X7. The support of the previous approximation
T9~1 is combined with the set of 2k indices of the largest row-
fy-norms of the residual A*R7~'. This larger set, 7, has at
most 3k indices and the next approximation is determined
by projecting the measurements Y onto this subspace. The
best k-row-sparse approximation is then obtained by hard
thresholding this projection to the rows with k largest row-
{5-norms.

C. Sufficient Restricted Isometry Properties

The following recovery guarantees are based on the re-
stricted isometry property (RIP) introduced by Candés and
Tao [27]. The standard RIP constant of order k is the smallest
value Ry such that

(1= Rp)ll2ll3 < [|A=[3 < (1 + Ry)l|[13

for all © € x, (k). The RIP constants are clearly determined
by the most extreme singular values of all m x k submatrices
of A formed by selecting k& columns. However, the smallest
and largest singular values of the submatrices can deviate from
1 in a highly asymmetric fashion since the smallest singular
values are nonnegative while the largest singular values can
be much greater than 1. Therefore, it is beneficial to treat the
sets of smallest and largest singular values independently. A
natural relaxation of the standard RIP constants is to use an
asymmetric version of Candés and Tao’s RIP constants; the
asymmetric RIP constants presented in [21] capture the most
extreme smallest and largest singular values from the set of
all m x k matrices formed by selecting k columns of A.
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alg [ ARIP Condition 9 (k; A) [ €99 (k; A)
SIHT 26 (3k) < 1 26w (3k) 20v/1 T Uar
SNIHT 2Usy, + 2Lay + Ly, < 1 2(3k) 2 (%{*Ef’f}
SHTP V3L (3k) <1 \/% V1 2([21322@)]2 T a- Lk)(11+[;w(2k))
SNHTP | V3Usk + V3Lax + Ly < 1 \/% VIReRE + T e
SCoSaMP A/ Lﬁ Inax{Uéu€7 L4k} <1 \/W \/ (1 x U3Ic + \/1 T 3 R4k]2 (\/2(1;Zik2) + \/i+%il’i)

TABLE I
SUFFICIENT ARIP CONDITONS WITH CONVERGENCE FACTORS 1®!9 (k; A) AND STABILITY FACTORS £%19(k; A) FOR ALGS. 1-3. LET

Pu(ck) = max{|1 —w(1+Uek)|, |1 —w(l = Leg) |} AND §(ck) =

Definition 1 (RIP Constants). For A € M (m,n), the lower
and upper asymmetric restricted isometry property (ARIP)
constants of order k are denoted Ly and Uy, respectively, and
are defined as:

1— 5 < || Az||3
Ly :=minc subject to ( o)llzllz < [l Az[l3 (D
>0 for all z € x, (k)
1 5> || Az||3
U :=minc subject to (1 +)llzllz = | Azllz (2)
>0 for all x € xy(k)

The standard (symmetric) restricted isometry property (RIP)
constant of order k is denoted Ry, and can be defined in terms
of the ARIP constants:

3)

The main result for each of the algorithms takes on the
same formulation. Therefore, we consolidate the results into a
single theorem where the sufficient ARIP conditions are stated
in Table I along with the appropriate convergence and stability
factors. Theorem 1 provides a bound on the discrepancy of the
row sparse approximation obtained by the greedy algorithms
and the optimal row sparse approximation.

Rk = max{Lk, Uk}

Theorem 1 (Simultaneous Sparse Approximation). Suppose
Ae M(m,n), X € M(n,l), T is the index set of rows of X
with the k largest row-fo-norms, Y = AX+FE = AX(T) +FE
for some error matrix E and E = AX(rey + E. Assume
the initial approximation is the zero matrix X° = 0. If
A satisfies the sufficient ARIP conditions stated in Table I,
then each algorithm, alg from {SIHT, SNIHT, SHTP, SNHTP,
SCoSaMP}, is guaranteed after j iterations to return an
approximation X7 satisfying
alg

X7 — Xmy|lr < (1 alq) 1 Xy llP +1 alg||E||F7 4)
where p®9 = 19 (k; A) and €49 = §“lg(k; A) are defined in
Table I.

In the ideal, exact row sparse setting, a more specific result
applies. Under the same sufficient ARIP conditions the greedy
algorithms are all guaranteed to converge to the targeted row
sparse matrix and the support set is identified in a finite number
of iterations.

70’6*%’“ FOR THE ARIP CONSTANTS L, L., AND Ugj OF THE m X n MATRIX A.

Corollary 1 (Simultaneous Exact Recovery). Suppose A €
M(m,n), X € xni(k), Y = AX, and the initial approxi-
mation is the zero matrix X° = 0. If A satisfies the sufficient
ARIP conditions stated in Table I, then each algorithm, alg
from {SIHI SNIHT, SHTP, SNHTP, SCoSaMP}, is guaranteed
after j iterations to return an approximation X7 satisfying

19 = X||p < () | X F, (5)
where ™9 = p9(k; A) is defined in Table 1.
Moreover, define

) log Vimin (X)
alg _ min 1 6
Imaz ’lOgualQ(/{;A) + ( )

LESUY, Xi
where  Umin(X) = MmN € gpp( X) | ()||2'
1 X F

Then, if j > jiid,, supp(X7) C supp(X).

The ARIP analyses of the MMV variants of the greedy
algorithms are clearly independent of the number of vec-
tors (columns) contained in X, and the sufficient conditions
therefore apply to the SMV case. Hence the sufficient ARIP
conditions in Table I capture the known conditions for the
SMV case presented by Foucart [20] namely Rg, < 1/2

for IHT, Rs, < 1/+/3 for HTP, and Ry, < 1/2/(5 ++/73)

for CoSaMP. The standard RIP extensions to the normalized
versions are therefore Rs; < 1/5 for NIHT and Rz, <
1/(2/3 + 1) for NHTP. The proofs of Theorem 1 and
Corollary 1 appear in Appendix A and [26].

III. ALGORITHM COMPARISON
A. Strong Phase Transitions

The comparison of sufficient conditions based on restricted
isometry properties can be challenging when the conditions
do not take on the same formulation or use different support
sizes for the RIP constants. Blanchard, Cartis, and Tanner
[21] developed bounds on the ARIP constants for Gaussian
matrices which permit a quantitative comparison of sufficient
ARIP conditions via the phase transition framework. The unit
square defines a phase space for the ARIP conditions under a
proportional growth asymptotic, namely (m/n, k/m) — (6, p)
as m — oo for (6, p) € [0,1]%. Utilizing the bounds on the
ARIP constants it is possible to identify lower bounds on



GREEDY ALGORITHMS FOR JOINT SPARSE RECOVERY

(167 Strong Recovery Phase Transitions:p¥9(3,0)=1
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Fig. 1. Lower bounds on the strong recovery phase transition curves for
SIHT, SNIHT, SHTP, SNHTP, and SCoSaMP. Beneath the line, the associated
sufficient condition from Table I is satisfied with overwhelming probability on
the draw of A from the Gaussian matrix ensemble; therefore %9 (k; A) < 1.

strong phase transition curves p‘glg (&) which delineate a region

k/m = p < p49(8) where the sufficient ARIP condition is
satisfied with overwhelming probability on the draw of A from
the Gaussian ensemble, i.e. the entries of A are drawn i.i.d.
from the normal distribution N'(0,m™"). For a more general
description of the phase transition framework in the context
of compressed sensing, see [28].

For each algorithm, the strong phase transition curve paslg ()
is the solution to the equation p29(6, p) = 1 where u®9(8, p)
is obtained by replacing the ARIP constants in p®9(k; A)
by their respective probabilistic bounds from [21]. A higher
strong phase transition curve indicates a sufficient condition
which is satisfied by a larger family of Gaussian matrices
since the region below the curves paslg(é) demonstrate that
u9(k, A) < 1 with overwhelming probability. Figure 1
shows that SHTP (with w = 1) has the best sufficient ARIP
condition among these five algorithms while the efficacy of the
conditions for the remaining algorithms from largest region
of the phase space to smallest is SIHT, SCoSaMP, SNHTP,
SNIHT.

When [ = 1, the simultaneous recovery algorithms are
identical to their SMV variants. Moreover, the sufficient con-
ditions in Table I are independent of the number of multiple
measurement vectors and therefore apply directly to the SMV
algorithms. A similar analysis for SMV greedy algorithms was
performed in [23]. Figure 1 shows the lower bound on the
strong phase transition for the five algorithms. The improved
analysis leading to the sufficient conditions in Table I yields
phase transition curves for IHT and CoSaMP that capture
a larger region of the phase space then the phase transition
curves reported in [23]. The strong phase transition curves for
the sufficient ARIP conditions for NIHT, HTP, and NHTP are
reported for the first time.

The lower bounds on the strong phase transition curves
point out the pessimism in the worst case analysis. Notice
that Figure 1 implies the sufficient conditions from Theorem 1
require p = k/m < .0008 for SCoSaMP, SNIHT, and SHTP.
The bounds on the ARIP constants are surprisingly tight
and improved bounds by Bah and Tanner [29] show that
the curves defined by the functions p‘fqlg(é) closely identify

the regions of the phase space in which one can expect to
satisfy the sufficient conditions. As shown in [23], empirical
identifications of RIP constants show upper bounds on these
phase transition curves are no more than twice as high as
those depicted in Figure 1. The analysis required to employ the
techniques outlined in [23] is contained in the supplementary
material for this paper [26] along with the phase transition
alg
representation of the stability factors @7@] from Theorem 1.

B. Weak Phase Transitions

It is often more useful to understand the average case perfor-
mance of the algorithms rather than the worst case guarantees
provided by the sufficient conditions and delineated by the
strong phase transition curves of Section III-A. In this section,
we provide empirical average case performance comparisons
via a weak recovery phase transition framework. Although
empirical testing has its limitations, the results presented
here provide insight into the expected relative performance of
the greedy simultaneous sparse recovery algorithms SNIHT,
SNHTP, and SCoSaMP.

The empirical testing was performed using an MMV ex-
tension of the Matlab version of the software GAGA for
Compressed Sensing [30], [31]. The setup and procedures are
similar to those outlined in [24]. A random problem instance
consists of generating a random matrix A € M (m,n) and a
random MMV matrix X € x,,;(k), forming the measurements
Y = AX, and passing to each algorithm the information
(Y, A, k). To form the MMV matrix X, a row support set
T with |T| = k is chosen randomly and the entries of the
multiple measurement vectors are selected from {—1,1} with
probability 1/2, thereby forming the matrix X = X1y €
Xn,l(k)'

For the results presented here, n = 1024 with tests con-
ducted for 15 values of m where m = [§ - n] for

§ € {0.01,0.02,0.04,0.06,0.08,0.1,...,0.99}

with 8 additional, linearly spaced values of § from 0.1 to
0.99. For each (m,n) pair, a binary search determines an
interval [Kpin, kmaz] Where the algorithm is observed to have
successfully recovered 8 of 10 trials at &,,,;,, and 2 of 10 trials
at kpqe- The interval [Kpin, kmae] i then sampled with 50
independent, linearly spaced values of k from k,,;,, t0 Kkinazs
or every value of k € [kmin, kmaz] if kmaz — Kmin < 50.
Ten tests are conducted for each of the sampled values of
ke [kmin7 kma;ﬂ]~

The matrix X is determined to be successfully recovered if
the output of the algorithm, X, satisfies

|X — X1yl < 0.001.

The empirical weak phase transitions are defined b?/ a logistic
regression of the data which determines a curve py;? () in the
phase space identifying the location of 50% success. For a
detailed explanation of the logistic regression, see [24].

For computational efficiency, the algorithms have been
altered slightly in the testing regime. The projection steps
in Algorithms 2 and 3 have been replaced with a subspace
restricted conjugate gradient projection (see [30]). Empirically,
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SCoSaMP has improved performance when the index set S7
in Step 2 has k entries rather than 2k entries; this change was
implemented in the testing.

Critically important to the empirical testing is establishing
suitable stopping criteria for the greedy algorithms. Following
the extensive work presented in [24], [30], the algorithms
continue to iterate until one of the following stopping criteria
is met:

o the residual is small: ||R? ||z < 0.001 - Z;

e a maximum number of iterations has been met: 5000 for
Algorithm 1 and 300 for Algorithms 2 and 3;

« the algorithm is diverging: |[R7||r > 100 - ||Y||r;

o the residual has failed to change significantly in 16
iterations:

Cmax || R p — R < 107
i=1,...,16

« after many iterations, the convergence rate is close to one:
let ¢=700 for Algorithm 1 and c¢=125 for Algorithms 2
and 3,

1R~
177117

When any one of the stopping criteria is met at iteration j,
the algorithm terminates and returns the k-row sparse matrix
X=X/,

As in Section III-A, a higher empirical weak recovery
phase transition curve indicates that the algorithm successfully
recovers a larger set of MMV matrices X . All results presented
in this section have the nonzero entries of the MMV matrix
X selected with equal probability from {—1,1}; alternative
MMV matrix ensembles, for example selecting the nonzeros
from N(0, 1), result in higher weak phase transition curves.
These findings are consistent with other empirical studies
[22], [24]. Also, throughout this section, the matrix A is
selected from the Gaussian ensemble with entries drawn i.i.d.
from N(0,m~!) for consistency with the strong recovery
phase transition curves from Section III-A. The weak phase
transition curves are higher when the matrix A is constructed
by randomly selecting m rows of the discrete cosine transform;
the empirical results for the DCT matrix ensemble are included
in the supplementary material [26].

To demonstrate the improved performance of the algorithms
from the SMV setting (I = 1) to the MMV setting, the
weak phase transition curves are presented for [ = 1,2,5, 10.
In Section III-B1, the optimal step size selection in SNIHT
and SNHTP is shown to provide a noticeable advantage over
the fixed step size variants SIHT and SHTP, particularly as
the number of multiple measurement vectors increases. The
performance gain in the exact sparsity MMV setting is detailed
in Section III-B2.

1) Optimal Step Size Selection: The fixed step size in
SIHT and SHTP permits simplified analyses leading to weaker
sufficient conditions than for the optimal step size variants
SNIHT and SNHTP. This is clear from the strong phase
transitions presented in Figure 1. Intuitively, selecting the step
size to minimize the residual in the subspace restricted steepest
descent direction should lead to improved performance. For

1
5
if 7 > ¢ and ( ) > 0.999.
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Fig. 2. Empirical weak recovery phase transitions: fixed versus optimal
step size with A from the Gaussian matrix ensemble. SHTP (w = 1) versus
SNHTP (a), SIHT (w = 1) versus SNIHT (b).

the SMV setting, the introduction of the optimal step size
in NIHT provides a significant improvement in average case
performance [18], [24] even when compared to the tuned step
size w = .65 identified for Gaussian matrices A in [22].
Interestingly, the improvement in the recovery phase transition
for [ = 1 is not nearly as dramatic for NHTP compared to HTP
with w = 1.

In Figure 2, we see that for both SNIHT and SNHTP
(Algorithms 1 and 2), the inclusion of the optimal step size
improves performance in the MMV setting, and the advantage
increases as the number of multiple measurement vectors
increases. Although the analysis is simplified with a fixed
step size, the improved empirical performance suggests that
implementations should utilize the optimal step size, especially
in the MMV setting. When A is a subsampled DCT matrix,
SNIHT and SNHTP are more efficient than the fixed step
size variants, especially in the most interesting regime for
compressing sensing with m/n — 0. The comparisons of
the associated weak phase transitions for the DCT matrix
ensembles are displayed in [26, Figure 6].

2) Exact Recovery: Figure 3 shows the empirical weak
recovery phase transition curves p'é[l,g (0) for X € x,1(k) with
n=1024 and ! = 1,2, 5, 10 for SNIHT, SHTP, and SCoSaMP.
A theoretical average case analysis for the greedy algorithms
considered here is currently unavailable in the literature as
the lack of Lipschitz continuity for the thresholding opera-
tion imposes a significant impediment. For the SMV setting,
Donoho and Tanner utilized stochastic geometry to identify
the weak phase transition for recovering a sparse vector via
{1-minimization when A is Gaussian [32], [33]. For reference,
the theoretical weak phase transition for £;-minimization with
I = 1 is included as the blue, dashed curve in Figures 3(a)—(c).

Clearly, each of the algorithms takes advantage of additional
information about the support set provided by the jointly
sparse multiple measurement vectors. As [ increases, the
weak phase transitions increase for all three algorithms in
Figure 3. For direct performance comparison, Figure 3(d)
displays the empirical weak recovery phase transition curves
for all three algorithms with [ = 2,10. SNIHT and SNHTP
have very similar weak phase transition curves in the MMV
setting, extending the similar observation for the SMV case
detailed in [24]. When A is Gaussian, SCoSaMP recovers row
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Fig. 3. Empirical weak recovery phase transitions for joint sparsity levels [ =
1,2,5,10 with A from the Gaussian matrix ensemble: SNHTP (a); SNIHT
(b); SCoSaMP (c); All algorithms (d). Theoretical weak phase transition for
£1-minimization is the blue, dashed curve in (a)—(c).
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TABLE II

THE RATIO OF THE AREA OF THE RECOVERY REGION FOR [ = 2, 5,10
COMPARED TO THE AREA OF THE SINGLE MEASUREMENT VECTOR
RECOVERY REGION.

sparse matrices X for noticeably larger values of p = k/m
throughout the phase space, especially as m/n — 1, and for
all four values | € {1,2,5,10} (I = 1,5 are omitted from
the plot for clarity). However, when A is a subsampled DCT
matrix, the advantage shown by SCoSaMP is removed. Similar
plots for the subsampled DCT are given in [26].

Referring to the area below the empirical weak phase tran-
sition curves as the recovery region, Table II provides the ratio
of the areas of the recovery regions for [ = 2,5,10 compared
to the area of the recovery region for the SMV setting (I = 1).
When A is drawn from the Gaussian matrix ensemble, the area
of the recovery regions for all three algorithms more than
doubles when 10 jointly sparse vectors are simultaneously
recovered. For [ = 10, the area of the recovery region for
SCoSaMP is approximately 1.3 times larger than the area of
the recovery region for SNHTP; see Figure 3(d).

Recovery Phase Transitions: Gaussian Matrix Ensemble
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Fig. 4. Weak Recovery Phase Transitions for Algorithms 1-3 and RA-
SOMP+MUSIC with joint sparsity levels I = 1, 10 with A from the Gaussian
matrix ensemble.

C. Comparison to Rank Aware Algorithms

Most greedy simultaneous recovery algorithms, including
Algorithms 1-3, fail to incorporate the rank of X in the
algorithms’ definition and analysis. From this point of view,
the algorithms are “rank blind”. In fact, the ARIP analysis pre-
sented here and elsewhere requires the number of observations
(rows of A) to satisfy m = Ck log(n) for a constant C'. Davies
and Eldar analyzed “rank aware” (RA) greedy algorithms for
the MMV problem [9] which incorporate an orthogonalization
of the column space of the residual in each iteration. Blanchard
and Davies [25] and Lee, Bressler, and Junge [12] considered
rank aware greedy algorithms followed by an application of
MUSIC [34] for incorporating rank awareness in the MMV
setting. For A Gaussian, Blanchard and Davies established that
the logarithmic term in the requisite number of measurements
is reduced by the rank so that m > Ck (£ log(n) + 1) [25].

Interestingly, Figure 4 shows the seemingly rank blind
greedy algorithms presented here have superior weak phase
transitions than the rank aware algorithm RA-SOMP+MUSIC.
This empirical observation suggests that SNIHT, SNHTP, and
SCoSaMP are somehow rank aware? and calls for further
exploration. One possible explanation is that when selecting
support sets based on the largest row-{5-norms of the residual
or the current approximation, the DetectSupport step
in Algorithms 1-3 is inherently rank aware providing the
performance gain with the increase in the number of multiple
measurement vectors.

IV. CONCLUSION

Five greedy algorithms designed for the SMV sparse ap-
proximation problem have been extended to the MMV prob-
lem with ARIP guarantees on the approximation errors and
convergence for the ideal exact row sparse situations. The
sufficient ARIP conditions for the algorithms have been com-
pared via the strong phase transition framework for Gaussian
matrices providing the best available strong recovery phase
transitions curves. The importance of the optimal step size
selection in the normalized variants of the algorithms was

2An alternative interpretation is that rank awareness in OMP based algo-
rithms is insufficient to close the performance gap on these more sophisticated
greedy algorithms.



GREEDY ALGORITHMS FOR JOINT SPARSE RECOVERY

shown through empirical testing to provide a more significant
advantage in the MMV setting than in the SMV setting.
Also, through empirical testing, an average case performance
comparison of the algorithms was presented through the weak
phase transition framework. These greedy algorithms appear
to outperform an explicitly rank aware algorithm.

In this work, we have identified the location of the weak
phase transition curves. Future empirical investigations on
additional performance characteristics for more realistic sized
problems and noisy signals, similar to [24], will better inform
algorithm selection in regions below the weak phase transition
curves for multiple algorithms.

APPENDIX A
PROOFS OF RECOVERY GUARANTEES
All inner products in this manuscript are Frobenius matrix
inner products. For Z,W &€ M(r,c), the Frobenius matrix
inner product is defined by

(Z,W) = trace(W™ Z).

The Frobenius norm defined in Section I can be equivalently
defined via the Frobenius matrix inner product: for Z €
M(r,c),

1ZI%=(2,2).

A. Technical Lemmas

The straightforward proofs of Lemmas 1-2 are available in
the supplementary material [26] for completeness.

Lemma 1. Let Z € M(n,l) and let S,T C {1,2,...,n} be
row index sets with |S| = |T| = k. If T is the index set of the
rows of Z with the k largest row-ly-norms, then

12 = Zyllr <12 = Zs)l - %)

Lemma 2. Suppose Y = AX + E, T = supp(X), and E =
AX(rey + E. Let alg be any algorithm from Algorithms 1-3
and let X7 denote the approximation in iteration j from alg.
If there exist nonnegative constants p™9 and €9 such that
u™9 < 1 and for any iteration j > 1,

1X9 — Xyl < p®9 X5~ Xyl + €)1 B, ®)

then

. alg
. e ¢ 5
1X7 = X(yllr < (1) 1X° = X(pyllp + T s 1E| .

€))

Lemma 3. If A € M(m,n) has ARIP constants Ly, Uy, and
Z € xn,(k), then

(1= Lozl < 1AZ]F < A+ Un)lIZ|5- (10)

Proof: For each column of Z, Definition 1 states (1 —
L)||Zi|3 < |AZ;||3 < (14 Uy)||Z;||3. Therefore, summing
over all columns in Z provides the ARIP statement in terms
of the Frobenius norm. ]

Lemma 4. Let A € M(m,n) have ARIP constants L, and
Uy, and let T7 be the index set from the Detect Support
step in iteration j of SNIHT or SNHTP (Algorithms 1 or 2).

Then, w3+, the optimal steepest descent step size in iteration
7+ 1 of SNIHT or SNHTP, satisfies

1 <wj+1<#_
1+Uk_ _17Lk-

(an

Proof: Let Z7 = (A*(Y—AXj))(Tj) where Y €
M (m,1) is the input measurements and X7 is the approxi-
mation after iteration j for SNIHT or SNHTP. Then

7
| Ari 29|
By Lemma 3,
| Azs 273
(1—Ly) < ——-E < (14 Uy),
127]1%
and (11) follows. |

Lemma 5. Let A € M(m,n) with ARIP constants Ly, L,
Uk, and U, where k,ck € N. Let S be any column index
set with |S| = ck and let {w’}32, be a sequence of positive
scalars. Then,

(i) if w = w is constant for all j, then

[T—wAg5As|l2 < max {[1 —w(1 +Uek)|, 1 —w(l = Lex)|};

(ii) if g <o’ < 1=

0, = T=Lp for all j, then

Uck + Lck

I — WAL Aglls <
[/ —w? AgAs|l2 < 11,

Proof: From Definition 1 and as described in [21], the
ARIP constants are equal to extreme eigenvalues on the set of
all Gram matrices comprised of ck columns of A:

1— Lo, = Q;fg}ﬂck A (AHAg);
L+ Uee = max A (Az4).

Hence, for any set S with |S| = ck, 1 — L, < A(A§Ag) <
14U,y Therefore, the eigenvalues of the matrix I —w’ AtAg
are bounded by

1—w(1+Ug) <A —w A5As) <1—w/(1— Ley).
In case (i),

I — wASAs]l2 = max|/\ (1 —ijgAS)|
<max{|1 —w(l+Ue)|,|1 —w(l = Le)|}-

In case (ii), for each j Lemma 4 ensures

1— L,
1 .

1-— 1—Lo)>1—w! (1 — L)

1+Uk( k) > 1 —w( k)

Hence,

U, — Ly, ; U + Lk
— " < AN —wALAg) < ————.
1—Lp, = (I - A54s) < 1+ Us
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Thus

|1 —wA5As]l2 < max | (I—ijgAS)’
< max{‘ —Ueci — L | Uk + Leg
- 1— Ly 1+ Uy
:maX{Uck+Lk Uk+Lcl~c}

)

1—Ly " 14U

Since U, < Ui, Ly < Leg, and 1 — Ly, < 14Uy, (ii) follows
from the bound

{Uck+Lk UkJrLck}
max

Uck'+Lck
1—L; ' 14U ’

1- Ly

B. Algorithm Specific Theorems

The following theorem and its proof are representative of
the analysis for all five greedy algorithms. This proof includes
the use of ARIP constants and simultaneously treats both fixed
and normalized step-sizes. The proof is based on the IHT proof
of Foucart [20].

Theorem 2 (SIHT and SNIHT). Let X € M(n,l) and let T
be the row index set for the k rows of X with largest {5 norm.
Let A € M(m,n) with ARIP constants Ly, Lsy, Usy, and Usy,
and let (3k) be a function of ARIP constants such that for all
w? in Algorithm 1, I—ijzQAQHQ < p(3k) < 1 for all index
sets Q with |Q| = 3k. Define Y = AX + E = AX () + E
for some error matrix E € M(m,1) and E = AX(pey + E.
Define the ARIP functions

p (k) = 2¢0(3k)

&i(k) = Q(mjaij)\/m.

If {X7} is the sequence of approximations from SIHT or
SNIHT (Algorithm 1), then for all j

12)
13)

X7 =Xy < pr (W) | X7 = Xy | p+E0 (R) | E || . (14)

Proof: Let VI = X7 +wJ A*(Y — AX7) be the update step

from Algorithm 1. By substituting ¥ = AX (1) + AX (7<) +
FE = AX(T) + E, we have

Vi=X+ w0 A" A(X(r) — X7) + W A"E. (19)

By the DetectSupport and Threshold steps in Algo-
rithm 1, Lemma 1 implies

[V = X2 < ||V — X% (16)

Writing V7 = V7 — X1y + X(r), the left hand side of (16)
can be expanded via the Frobenius inner product to reveal
V7 = XTHE = V7 = Xy lIF + 1 Xy — X7+ %
=2 [REAL ((V/ = X7y, X(1) = X7*0) )]
a7

Combining (16) and (17) and bounding the real part of the
inner product by its magnitude,

[ Xy — X% < 2V = Xy, Xy — XTTHY]. (18)

From (15),
VI — Xipy = (I —w A*A)(X7 — X (1)) + w AE,
so applying the triangle inequality to (18), we have
1X5+ = Xy 12
<2|((I =W A" A) (X7 = X)), (X7 = X (1))
+ 20 [(B, AT = X(r))|
=2|((I =W AHAQ) (X! — X)), (X7H! = X(1)))|
+ 20 ‘<E A(XITT X(T))>‘ (19)

where Q = TUT7 U TI+T,

Now, let ¢(3k) be a function of ARIP constants such that for
any set () with |Q| = 3k, we have HI_UJ‘jAZ?AQHQ < p(3k).
Then

(T — w? A AQ)(XT — X(1y), (X! = X(1)))]

< eBR)IX7 — X |pl| X7 = Xpyllp. (20

By Definition 1 and the Cauchy-Schwartz inequality,

(B, A = X(29) )| < T+ Usl| Bl X7 = Xy | -
2D
With (20) and (21), (19) simplifies to

X7 =Xyl F < 20(3K) | X7 =X (1)l 74207 /1 + Ui || E |
(22)
establishing (14). |
The proofs of the following theorems are presented in [26]
for completeness. The proofs closely follow the analysis for
the SMV variants presented by Foucart [20] while incorpo-
rating ARIP constants and simultaneously treating fixed and
normalised step-sizes.

Theorem 3 (SHTP and SNHTP). Let X € M(n,l) and let
T be the row index set for the k rows of X with largest {5
norm. Let A € M (m,n) with ARIP constants L.j and Uy, for
c¢=1,2,3, and let ¢(ck) be a function of ARIP constants such
that for all w7 in Algorithm 2, ||I —w’ A Aglla < @(ck) <1
for all index sets Q with |Q| = ck. Define Y = AX + E =
AX iy + E for some error matrix E € M(m,l) and E =
AX(rey + E. Define the ARIP functions

_ [ 20eBR)
S R e -
. 2(1 +U2k) maij V1+Ug
Q=1 [p(2K))? T ey Y

If {X7} is the sequence of approximations from SHTP or
SNHTP (Algorithm 2), then for all j

X7 =Xy || < pa(R) | X7 = Xy | p+E(R) | E]| . (25)

Theorem 4 (SCoSaMP). Let X € M (n,l) and let T be the
row index set for the k rows of X with largest {5 norm. Let
A € M(m,n) with ARIP constants L. and Uy, for ¢ =
2,3,4, and let (ck) be a function of ARIP constants such
that ||I — AZAqll2 < ¢(ck) < 1 for all index sets Q with
|Q| = ck. Define Y = AX +E = AX )+ E for some error
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matrix E € M(m,1) and E = AX(pey + E. Define the ARIP
functions

[(o(2R) + (k)P (1 + Bp(aR)2)
= 1= [ {ahTP 0
£3(k) = V/3(1 + Usy)
3 2(1 4 Usp) 1+ Usy,
VISR W T amE T T ek
(27)

If {X7} is the sequence of approximations from SCoSaMP
(Algorithm 3), then for all j

X7 =Xy llp < pa(R) X7 = Xy | p+E(R) | B p- (28)

C. Proof of Main Results

Proof of Theorem 1: For the fixed step size variants
SIHT or SHTP, Lemma 5 ensures that the ARIP function
o(ck) from Theorems 2 and 3 can be chosen to be the
function ¢,,(ck) = max{|1 — w(1 + Uck)|, |1 —w(l — Lek)|}-
Likewise, for the normalised variants SNIHT and SNHTP,
Lemma 5 ensures that the optimal subspace restricted steep-
est descent steps permit the substitution of ARIP function
Y(ck) = %LL;’“ for the ARIP function ¢(ck) in Theorems 2
and 3. Finally, for SCoSaMP, it is clear that we can select
(p(4k:) = maX{U4k, L4k} = R4k.

All three choices of ARIP functions are nondecreasing. In
the following, each ARIP function p®9(k; A) is defined in
Table 1. Therefore, it is clear that with p(ck) = ¢, (ck),

pia (k) < o™ (k; A), (29)
o (k) < ptP (ks A). (30)
For o(ck) = ¥(ck),
lffl(k) < ﬂsniht(k,A)7 (31)
pa(k) < p™P (k; A) (32)
Finally, with ¢(4k) = Ry,
ﬂS(k) S #Scosamp(k;A). (33)

The sufficient ARIP conditions in Table I guarantee that
the associated ARIP functions p®9(k; A) < 1. Therefore,
combining Lemma 2 with Theorems 2—4 proves Theorem 1.
|
Proof of Corollary 1: In the ideal setting where T =
supp(X) and E = 0, with X° = 0 (5) follows directly from
Theorem 1. The number of iterations follows from a minor
generalization of analogous results in [2], [23] since it is clear
that

alg .
| XImas — X||p < min 1 X ll2

and therefore supp(X jftfgz) C supp(X). [ |
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APPENDIX B
GREEDY ALGORITHMS FOR JOINT SPARSE RECOVERY:
SUPPLEMENTARY MATERIAL

This document includes supplementary material for the
paper Greedy Algorithms for Joint Sparse Recovery and the
references to definitions, theorems, lemmas and equations
refer to that document. The numbering in this document
is a continuation of that in the main document. First, for
completeness the omitted proofs are included in Section B-A.
The analysis verifying the use of the asymptotic bounds on
the ARIP constants to determine the strong phase transition
curves in Section III-A is included here in Section B-B. Also,
various level curves for convergence and stability factors are
provided in Figure 5. The additional empirical weak phase
transitions for A drawn from the DCT matrix ensemble appear
in Section B-C.

A. Omitted Proofs

In the following, if S, T are index sets, let T\S := {t €
T :t ¢ S} and define the symmetric difference of the two
sets TAS := (T'US)\(T'N.S). We first prove an additional
technical lemma utilized in the proofs of Theorems 3 and 4.

Lemma 6. Let Z € M(n,l) and let S,T C {1,2,...,n} be
row index sets. Then

1ZrsllF+ | Zs\rllr < V2| Zras|| - (34)

Proof: For any real numbers a, b, 2ab < a® + b? so that

(1Zrsle + 1Zs\rlle)® = 1 ZrsllZ + 1 Zsyr 1
+ 2 Zr\sllFll Zs\rll 7
<2(|1ZrslF + 1 Zs\1ll%)
=2 Zrasl|F

and (34) is equivalent. [ |

The following four proofs were omitted from the main
manuscript and are included here for completeness.

Proof of Lemma 1: By the choice of T, || Z||F =

Yier 1Zwll3 = Yses 1293 = 11Z(s)||%- Thus,
1Z = Zioylle = 1217 = 1 2y I3
<|ZIF = 1Zs) |17 = 12 = Z(s) I3

and (7) is equivalent. [ |

Proof of Lemma 2: This is a straightforward induction
argument. For X° = 0, the base case is trivial. Assuming the
inductive hypotheses (9) for iteration j — 1, then (8) implies
that at iteration j,

al

1X7 — Xl < 1 ( (u9) ™ | Xyl + — || B
(MIIF S B 2 (MIIF 1— oty F
L €| B,

which is equivalent to (9) for iteration j. [ |

Proof of Theorem 3: From the projection step in Algo-
rithm 2, Y — AXJ%! is Frobenius-orthogonal to the subspace
{AZ : supp(Z) C T'*1}. Letting Y = AX + E =
AX(7y+AX(re)+ E = AX(1)+ E, we have Y — AXI+! =

A(X(py — X7*1) + E. Therefore, for all vectors Z with
supp(Z) C T7 11,
0=(Y — AX'*' AZ)
= (A(X(r) - X7*1), A7) + (E,AZ)

= (X7 = Xz, A AZ) + (B, AZ) . (39)

Select Z = (X1 — X (1)) (rs+1) so that

1Z||7 = (X7t = X (7)) (1) || 5
= (X* = Xy, (XTT = X (1)) (a+1y)
I+1
— (X~ Xp), Z)

Scaling (35) by w’ and adding 0 to ||Z||% yields

1Z]|% = (X7* = X (1), (I —w! A*A)Z) + <ij,AZ> .
(36)
Now, let ¢(ck) be a function of ARIP constants such that
for any set Q with |Q| = ck, we have || — w/ A Agll2 <
¢(ck) < 1. Then with Q@ = T U T7*!, the first term in the
right hand side of (36) is bounded above by

(X — X1y, I —w!A*A)Z)
= (X7 — X7y, (I —w? AHAQ) Z)

< @(2K)|IX7T = Xy lp 2. (3T)
The second term of (36) is bounded above by
(B AZ) <wl VTT O Blrl ZIe. G9)

Applying the bounds (37) and (38) to (36),

1Z]lp < eR)IXTH = Xep) |7 + w? /1 + Ukl Bl p. (39)

Let W = (Xj+1 — X(T))((Tj+1)c) so that X7+1 — Xy =
Z + W. Then, by (39)

1X7+ = Xy 13— W% = 1213
. . - 2
< (p@0) X7 = Xyl + 0/ T+ Ukl Ell )
. . 2 L
= [e@R) X7 = X} + (w/ VI Tk) 12N}

+ 20(2k) (W) T+ T ) 1X7+ = Xy | Bl -
(40)

Define the convex polynomial
p(t) = (1= [p(2k)*) 2 = (20(2k)0? T+ Tk Bl ) ¢
(i + (w0 18R ).
The larger root t* of p(t) is therefore

* @(21{7) wj n
= PR [@(2!{:)]2 V1+Ui|E|r

(1= [6@0) I3 + (w0 VTR TR B
1— [p(2k))? '

_|_
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By the sub-additivity of the square root,

1 2k: 1
L IN/T+ Ul Bl e
— L 1— [p(2k)]?

*

(41)

By (40), p(||[X?*! — X(7||r) < 0 and therefore || X7*! —

Xyl < t*. (41) implies
; [Wr w1+ Uy
[ X7 = Xy lr < 5 T oon) I1E]| p-
= [p(2)]

(42)

To complete the proof, we find an upper bound for |W || .

Let V/ = X7 + w/A*(Y — AX7) be the update step for

Algorithm 2. The DetectSupport step selects 771! so that
% T)HF <|VZ (i) ||~ and therefore

HV(T\TJH)HF < ||V(jTj+1\T)HF- (43)
Substituting Y = AX(T) +E,
Vi=X+w A" A(X (1) — X7) + W A'E
=Xy + (I - A"A)(X? — X)) +WA'E. (44
With supp(X7*!) = T7H, (X<T>><T\TJ+1> = Xy -
X‘]+1)(T\Tj+l) and since W = (X7+t — X)) (ri+1yey =
(XI+1 — X 1)) (r\15+1), 1/(JT\Tj+1) can be written
Virypseny = = W+ @/ (AE)rr)
+ (I - W A A) (X7 = X(1))(r\1i41). (45)

Therefore, the left hand side of (43) can be bounded below
by applying the reverse triangle inequality to (45);

||VT\T’Jrl lr = [Wllr -’ H(A*E)(T\Tjﬂ) p
o H(I — Wl A A)(X7 — X(T))(T\Tj+1)HF. (46)

Since (X (7)) (ri+1\7) = 0, (44) permits the straightforward
upper bound on the right hand side of (43),

Vil < || = w? A*A) (X7 = X (1)) @senvny || o

Whg], @)

Applying (46), (47) and Lemma 6 to (43) establishes
IWlle <V2[(I - w? A A) (X7~ X)) crarses) |

+ V2w H(A*E)(TATHI) -

+w’

(48)

With Q = T'UT7 U T7+!, the first norm on the right hand
side of (48) satisfies

[(I = w? A*A) (X7 = X(1)) (rario]|
< |7 = ¥ A AQ) (X7 = X(1))|
< @(3k) ||(X7 = X)) (49)
while the second norm of (48) satisfies
|4 Byrazsnn|| < VI+ Tl Ble. 60

Hence, (49) and (50) yield

W e < V2p(3k) [[(X7 = X(1))|| o + V2(1 + Uzk)||E||5F~
(51

Wle.

Therefore, combining (42) and (51) establishes (25). |
Proof of Theorem 4: From the projection step in Algo-
rithm 3, Y — AU7 is Frobenius-orthogonal to the subspace
{AZ : supp(Z) C @ = S7UT’}. By an argument almost
identical to that at the beginning of the proof of Theorem 3,
we establish the upper bound

—X(llr+V1+ Usi| E|lF

(52)
where p(4k) is any function of ARIP constants such that ||/ —
AHAgll2 < p(4k) < 1 for any index set Q with |Q| = 4k.
In this case @ = Q7 UT ensures |Q| < 4k.

(U7 =X (1)) @il < (4k)||U’

Let W = (Uj — X(T))((Qj)c) so that U7 — X(T) =W+
(U7 — X(1))(@s)- Then (52) implies
U7 = Xy lIF < W%
. _ N2
+ (eUR)V? — Xyl + T+ Ul Elle ) - (53)

Define the convex polynomial

p(t) = (1= [e(m)*) 2 = (20(4k)v/T+ Tarl| B ) ¢
= (IWI3 + (1 + Usi) 1E113) -

Again, as in the proof of Theorem 3, since (53) ensures
p(|U? = X(1y||r) < 0, bounding the larger root of p(t) via
the sub-additivity of the square root produces

V1 + Usg
— p(4k)

W
- Xmllr < [W | » .

— [p(4k))?

Since Xj+1 - X(T) = (Uj - X(T)) - (Uj - Xj+1),
expanding the norm and bounding the real part of the inner
product with its magnitude as in the proof of Theorem 2, we
have

[leg

IE||r. (54)

||Xj+1 HU]

+2 (U7

Xenllp + 07 = X7+
— Xy, U7 = X7TH| . (55)

Xt <

Applying the triangle and Cauchy-Schwartz inequalities
followed by an ARIP bound, we have

(U7 = Xy, U7 =X
< (k) U7 = Xy || 107 = X771
+ V14 Ui E|lp U7 = X7 . (56)
Note that supp(U’ — X7*1) = (@7 and by the

DetectSupport and Threshold steps in Algorithm 3,
Lemma 1 ensures

U7 = X7 p < (U7 = X (1)) @i I F- (57)

Therefore, applying (52), (56), and (57) to (55), and rear-
ranging yields

X7 =Xy lIF < (14 3[0(4k)*) U7 — X117
+ 60(4k)\/1 4+ Us|U? — X (1)l p||E|| p

+3(1+ Usp) | E||%. (58)
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Since 36[p(4k)]2 < 12 + 36[p(4k)]?, then 6¢p(4k) <
24/3(1 + 3[¢(4k)]?). Using this observation to bound (58)

and simplifying produces the bound

IX9 = Xy F < VI+3[p(AR)PIV7 — Xyl
+ /31 + Usp) | E| -

To complete the proof via (54), we establish an upper
bound on ||[W||p. Notice that supp(X7), supp(Uj) C @7, and
therefore W = (Ujl — X(T))((Qj)c). = (Xj,_ X(T))((Qj)c).
Also, since 7 = 57 UTY, then (@Q7)¢ C (S7)¢ and thus

Wllr < (X7 = X(1))((siye) | e

= (X7 — X)) (rurinsy) |l F-

(59)

(60)
By the definition of S’ from Algorithm 3, Lemma 1 implies
H (A*(Y — AXT))

(TUTI\59) ||

< H(A*(Y— AXY)) (61)

(Sj\(TUTJ))HF'

Writing ¥ = AX(y) + E and observing that (X7 —
X (1)) (si\(ruriy) = 0, the argument of the norm on the right
side of (61) can be written

(A* Y - AXj)) (S3\(TUT9))

_ * _ xJ * I
= (A"AX () - X >)(SJ'\(TUTJ')) + (A E>(S_7.\(TUTJ.))
= ((I-A*A) (X7 — X1)))

(62)
Letting Q =TU QI =TUTI U S,

H (A"(Y - AXj))(Sj\(TUTj))HF

< (I — A AQ) (XY — X2) | + H (4°E)

+ H (4 E)

(SI\(TUT9)) ||

< p(4k) || X7 — X7 (63)

)HF

(sI\(@uT9)) || p

Similarly,

(A" = AX)) (rirn )

= (A*A(X(p) — X7)+ A'E
(4" Ay - X) + )((TUT-7‘>\SJ'>

= (X7 - X(T))((TUT.f)\s.f)
— (I - A"A) (X7 = X(1)))

+ (A*E)
(SIN(TUT7))
Therefore, (60) and (64) provide a lower bound for the left
hand side of (61).

H(A*(Y—AXJ'))

((TUT9)\S9)
(64)

(TUTI)\$9)

a
> Wie = | (I = Afzurs Aqura))(X = X)),
_ (A*E) v v
(si\(ruTi) ||
> [W]lp — (2k) || X7 — X —[(A*E .
2 [Wllr = )H (T)HF H( )(SJ‘\(TUTJ‘))F
(65)

(SIN(TUT?)) + (A E) (S9\(TUT9))

Applying (63) and (65) to (61), solving for |W|F, and
applying Lemma 6 and the upper ARIP bound, we have

Wil < (£(2k)+0(4k) | X7 = X7y | V201 + U4k)|(|6E6||F~
)

Combining (54), (59), and (66) establishes (28). |

B. Strong Phase Transitions

Under the proportional growth asymptotic (m/n,k/m) —
(0, p), computable bounds, £(d, p),U(d, p), on the ARIP con-
stants, Ly, Uy, were established for matrices drawn from the
Gaussian ensemble [21]. The exact formulation of the bounds
is available in [21].

Definition 2 (Proportional-Growth Asymptotic). A sequence
of problem sizes (k,m,n) is said to grow proportionally if,
for (8,p) € [0,1]%, ™ — § and £ — p as m — oo.

The following is an adaptation of [21, Thm. 1].

Theorem 5 (Blanchard, Cartis, Tanner [21]). Fix € > 0. Under
the proportional-growth asymptotic, Definition 2, sample each
matrix A € M (m,n) from the Gaussian ensemble. Let L(J, p)
and U(9, p) be defined as in [21, Thm. 1]. Define R(6,p) =
max{L(d, p),U(d, p)}. Then for any € > 0, as m — oo,

Prob[Ly < L(6,p) + ¢ — 1, (67)
Prob [U, <U(0,p) +¢] — 1, (68)
and Prob R < R(4,p) + ¢ — 1. (69)

To employ the bounds on the ARIP constants in order to
define the strong phase transition curves paslg(é), the stability
factor 119 (k; A) and stability factor ££'(5) must satisfy the
sufficient conditions of the following lemma:

Lemma 7 (Lemma 12, [23]). For some T < 1, define the set
Q= (0,7)? x (0,00)? and let F' : QO — R be continuously
differentiable on ). Let A be a Gaussian matrix of size
m x n with ARIP constants Ly, ..., Ly, Uy, ..., Uy, Let
L(0,p),U(0,p) be the ARIP bounds defined in Theorem 5.
Define 1 to be the vector of all ones, and

z(k) == [Li, - Lpk, Uk, . ., Ugg] s (70)
2(0,p) = [L(3,p), -, £(3,pp), U6, p), .., U5, qp)] -

(71

(i) Suppose, for all t € Q, (VFIt]), > 0 for all i =

1,...,p+ q and for any v € Q we have VF[t] - v > 0.
Then for any ce > 0, as (k,m,n) — oo with ™ —
d, % — p, there is overwhelming probability on the draw
of the matrix A that

Prob (F|z(k)] < F[z(d,p) + lce]) = 1 as m — Q.

(72)
Suppose, for all t € Q, (VFE[t]), > 0 for all i
1,...,p+ q and there exists j € {1,...,p} such that
(VEt]); > 0. Then there exists ¢ € (0,1) depending

only on F,é,and p such that for any € € (0,1)

(ii)

F[z(0,p) + 1ce] < Flz(6, (1 + €)p)], (73)
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and so there is overwhelming probability on the draw of
A that

as m — o0.
(74)

Prob (F[z(k)] < F[z(8,(1+¢€)p)]) — 1

Also, F(z(0,p)) is strictly increasing in p.

Definition 3. For (§,p) € (0,1)? define the asymptotic
bounds on the convergence factors as follows:

psh (8, p) = 2R (6, 3p); (75)
; U(6,3p) + L(6,3p)
sniht L .
B p) o= 2R T (76)
2[R(é,3p)]?
shtp - .
2
9 (U(S:3p)+L(5:3p)
1—L(3,
Msnhtp(67 p> = ( (0,p) ) 2; (78)
1— (M)
1-L(,p)
A[R(6,4p)]*(1 + 3[R(6,4p)]?)
scosamp —
I (6, p) : \/ |~ R, 4p) . (19)

For STHT with a fixed step size of w* = 2/(2+U(4,3p) —
L(8,3p)), the validity of employing the asymptotic ARIP
bounds was established in [23, A.4.]. For SIHT and SHTP with
a fixed step size of w* = 1, we see that Lemma 5 establishes
that ¢ (ck) = max{U.k, L.r} = Rek is a valid selection, and
thus from Table I we have

Q[ng]Q

D (s A) = | R

This allows us to state the following theorem.

Theorem 6. Suppose A € M(m,n) is drawn from the Gaus-
sian ensemble and that A has RIP constants Raj, Rz, < 1.
Consider SHTP with fixed step size w* = 1. Then for any
€ > 0, there is overwhelming probability on the draw of A
that

Mshtp(k; A) < ’ushtp(& (1 + 6)/))- (80)

Proof: Fix 7 < 1 and let Q = (0,7)2. For t € Q define

2t2
F[t] = . _2t2.
1

Clearly, F satisfies the conditions of Lemma 7 since

< 43ty 4ty > =0
(1—13)2"1—1¢2 ’

z(k) = [Rox, Ray]
2(8, p) = [R(4,2p), R(9, 3p)].

V] =

Now let

Then with overwhelming probability on the draw of A,

Flz(k)] < Flz(6, (1 + €)p)]-

Finally, we see that with overwhelming probability on the draw
of A,

M (ky A) = /F[2(k)]

< V[, (14 €)p)]
= u*" (5, (1 + e)p).

|

The arguments establishing the validity of the bounds

p* (8, p) and psc°s?mP(§, p) are similar to the argument

for Theorem 6 and are therefore omitted. We now establish

the validity of the asymptotic bounds for the normalized

algorithms, SNIHT and SNHTP. To do so, recall the ARIP
function v (ck) from Table I:

Uck + Lck

Y(ck) = 1L,

Therefore we introduce the following functions defined on the
set Q = (0,7)3 x (0,00)? for any 7 < 1:

(81)

t t
Yl =22 (82)
1-%
ls + ¢
Fop = Btts (83)
1—1t
These functions have nonnegative gradients since
ta+ta tg+1 1+t
VFY[H] = , .0, 0] 84
2 [f] ((1151)2 I—t" "1-t ) (84)
ts +t3 ts +1 1+1t3
VEY[t] = .0, .0, . 85
3 [ ((1151)2 -t 1t1) (85)

For the proofs of both of the following theorems, define

z(k) := [Lk, Lok, L3k, Usk, Usk), (86)

(6, p) == [L(0, p), L(6,2p), L(0,3p),U(5,2p),U(0, SP)]‘g
@87)

Theorem 7. Suppose A € M(m,n) is drawn from the Gaus-
sian ensemble and that A has ARIP constants Ly, Ly, Usg.

Then for any € > 0, there is overwhelming probability on the
draw of A that

S (e A) < (8, (1 4+ €)p). (88)

Proof: Fix 7 < 1 and let Q = (0,7)% x (0,00)%. From
(81), (83), and (86), we see that

V(3k) = Fy'[2(k)),
and from (76), (83), and (87), we have

1 )
EY[2(6,p)) = 51" (6. ).

(85) establishes that Fgf satisfies the conditions to invoke

Lemma 7. Thus, with overwhelming probability on the draw
of A,

o (k; A) = 20 (3k) = 285 [2(k)]
< 2FY[2(0, (1 + €)p)] = """ (5, (1 + €)p).
||

Theorem 8.
the Gaussian

Suppose A € M(m,n) is drawn from
ensemble and that A has ARIP constants
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Ly, Lok, Ly, Usg, Usy, with Usy, + Loy, + Ly, < 1. Then for
any € > 0, there is overwhelming probability on the draw of
A that

,usnhtp(k; A) < usnhtp(& (1 + 6),0). (89)

Proof: Fix 7 < 1 and let Q = (0,7)? x (0, 00)?. Restrict
the domain to the set Q = {t € Q : F[t] < 1}. Now define

wpy - 2F[0)?
P e
For ¢ = 2,4,
FYI(FL)? (2 FY
9 oy AR (FY 10)? (3 i 1) i
’ (1- F0)?)
For ¢ = 3,5,
0 a0 ()
8tiF [t] = 1— (ng’[t])Q > 0.
Finally,
0 prg 4FB{ 1] (- FY 1) +4F§b[t]F;ﬁ[t]\1:[t]’
oh L= (F 1)
where

vl = A1 (o 740) - {1 (1)

_tstts [ tatta \ latily [ ts+t3
Col—tp \(1—1t)2 1T—tp \(1—t)2
=0.

Hence VFH[t] > 0 and thus F*[t] satisfies the conditions to
invoke Lemma 7. Thus, with overwhelming probability on the
draw of A,

Msnhtp(k; A) =/ FH[z(k)]
(L+€)p)] = w6, (1 + €)p).

< \/FH
[ |

The preceding discussion establishes the validity of employ-
ing the bounds in Definition 3. Therefore for each algorithm,
we establish a probabilistic lower bound on the region of
the phase space in which a Gaussian matrix will satisfy the
sufficient condition 9 < 1. Following the work in [23],
defining p“slg (9) as the solution to the equation u*9(§, p) = 1,
if p< (1—€)p%9(3) for any € > 0, u*9(8,p) < 1. Since
u9(k; A) < p9(8, p) < 1 with overwhelming probability
on the draw of A from the Gaussian ensemble, then with the
same probability the sufficient ARIP condition is satisfied. The
curves pglg (6) are displayed in Figure 1. Here we include
level sets for both the convergence factors p9(d, p) and the
stability factor 5 & la, - in Figure 5. The computations required
to demonstrate the validity of employing the bounds on the
stability functions £%9 have been omitted.

Level Curves SNIHT Convergence Factor: "™

Level Curves SNIHT Slammy Factor: £ "‘/( )

x10°* x10*

p=k/m

02 03 o4 05 06 07 08 08 1 0 o1 02 03 04 05 06 07 08 08 1
&=min &=min

(a) (b)

Level Curves SNHTP Convergence Factor:p*™ Level Curves SNHTP Stability Factor: £""®/(1-u"""%)

0 o1

x10°* 10

0 o1 o0z 03 04 05 06 07 08 08 1 0 o1 02 03 o4 05 065 01 08 03 1
&=min &=min

(c)

(d)

10

0 o1 o0z 03 o0& 05 065 07 08 09 1 o o1 02 03 04 05 06 07 08 03 1

&=min &=min

(e) ®
Fig. 5. Level sets for the convergence factors 1?19 (6, p) and the stability
factors - L 3 (8, p), in the left and right panels respectively: SNIHT (a),(b);

SNHTP (cﬁt(d) SCoSaMP (e),(f).

C. Weak Phase Transitions

1) Optimal Step Size Selection: The increasing perfor-
mance improvement of the normalized versions of Algo-
rithms 1 and 2 as the number of jointly sparse vectors increases
was discussed for Gaussian matrices A in Section III-B1. The
improvement is more pronounced when A is constructed by
randomly selecting m rows of an n x n discrete cosine trans-
form matrix (DCT). In this case, we say A is drawn from the
DCT ensemble. Figure 6 includes the performance comparison
of the fixed step size variants of the algorithms versus the
optimal step size (normalized) variants. For comparison, both
the DCT ensemble and the Gaussian ensemble are included.
For SIHT, the step size is fixed at w = .65 while the step size
is fixed at w = 1 for SHTP. In the SMV setting SHTP (w = 1)
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Recovery Phase Transitions: SNIHT vs. SIHT, DCT Matrix Ensemble Recovery Phase Transitions: SNIHT vs. SIHT, Gaussian Matrix Ensemble
1 T T T T T T T = 1 T T T T T T T T T

J
Z SHTI =10 *
o K
g
Z SNIHT| =10
06 Raws
R
E R
3 o L
L o

LT L sHTI =1
-7 ’ v,'

-2 SNHTI 547

Recovery Phase Transitions: SNHTP vs. SHTP, DCT Matrix Ensemble Recovery Phase Transitions: SNHTP vs, SHTP, Gaussian Matrix Ensemble
T it

T sutpi =10,
S

Fig. 6. Empirical weak recovery phase transitions: fixed versus optimal Step
Size. SIHT versus SNIHT (a),(b) and SHTP versus SNHTP (c),(d). Matrix
ensembles DCT (left panels) and Gaussian (right panels).

and SNHTP have similar performance under the Gaussian
ensemble; when A is drawn from the DCT ensemble there is a
more pronounced improvement of SNHTP over SHTP . For A
drawn from the DCT ensemble, both SNIHT and SNHTP show
an increased performance improvement over SIHT and SHTP,
respectively, than for A drawn from the Gaussian ensemble.

2) Exact Recovery: For the exact recovery scenario, all
three algorithms, SNIHT, SHTP, SCoSaMP show improved
performance when A is drawn from the DCT ensemble
rather than the Gaussian ensemble. The lone exception to this
observation is SCoSaMP in the region m/n — 0. Figure 7
shows the empirical weak phase transitions for both the DCT
and Gaussian ensembles under the same experimental set-up
as described in Section III-B. For all three algorithms, the
ratio of the area below the recovery phase transition curves
for [ = 2,5,10 compared to the area below the curve for
I =1 are given in Table II.

For A from the DCT ensemble, the discrepancy between the
three algorithms’ performance is reduced as shown in Figure 8.
All three algorithms behave similarly through most of the
phase space although SCoSaMP demonstrates a difficulty for
m/n — 0, a finding consistent with that in [24].
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Fig. 7. Empirical weak recovery phase transitions for various joint sparsity

levels with matrix ensembles DCT (left panels) and Gaussian (right panels).
SNIHT (a),(b); SNHTP (c),(d); SCSMPSP (e),(f).
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Fig. 8. Weak Recovery Phase Transitions with joint sparsity levels [ = 2, 10
with matrix ensembles DCT (left panels) and Gaussian (right panels).



