
On Support Sizes of Restricted Isometry Constants

Jeffrey D. Blanchard∗,a,1, Andrew Thompsonb

aDepartment of Mathematics and Statistics, Grinnell College, Grinnell, Iowa 50112-1690, USA.
bSchool of Mathematics and the Maxwell Institute, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh

EH9 3JL, UK.

Abstract

A generic tool for analyzing sparse approximation algorithms is the restricted isometry property (RIP) intro-
duced by Candès and Tao. If R(k, n,N) is the RIP constant with support size k for an n×N measurement
matrix, we investigate the trend of reducing the support size of the RIP constants for qualitative compar-
isons between sufficient conditions. For example, which condition is easier to satisfy, R(4k, n,N) < 0.1
or R(2k, n,N) < 0.025? Using a quantitative comparison via phase transitions for Gaussian measurement
matrices, three examples from the literature of such support size reduction are considered. In each case,
utilizing a larger support size for the RIP constants results in a sufficient condition for exact sparse recovery
that is satisfied by a significantly larger subset of Gaussian matrices.

Key words: Compressed sensing, restricted isometry constants, restricted isometry property, sparse
approximation, sparse signal recovery

1. Introduction

In sparse approximation and compressed sensing, [8, 11, 14], one seeks to recover a compressible, or
simply sparse, signal from a limited number of linear measurements. This is generally modeled by applying
an underdetermined measurement matrix A of size n×N to a signal x ∈ RN known to be compressible or
k-sparse. Having obtained the measurements y = Ax, a nonlinear reconstruction technique is applied which
seeks a sparse signal returning these measurements. Numerous reconstruction algorithms have been analyzed
using a generic tool introduced by Candès and Tao [11], namely the restricted isometry property (RIP). To
account for the asymmetry about 1 of the singular values of submatrices of the measurement matrix A, the
asymmetric restricted isometry property (ARIP) has recently been introduced [1, 21]. We denote the set of
all k-sparse signals by χN (k) = {x ∈ RN : ‖x‖0 ≤ k}, where ‖x‖0 counts the number of nonzero entries of x.

Definition 1 (RIP [11] and ARIP [1]). For an n×N matrix A, the asymmetric RIP constants L(k, n,N)
and U(k, n,N) are defined as:

L(k, n,N) := min
c≥0

c subject to (1− c)‖x‖22 ≤ ‖Ax‖22, for all x ∈ χN (k); (1)

U(k, n,N) := min
c≥0

c subject to (1 + c)‖x‖22 ≥ ‖Ax‖
2
2 , for all x ∈ χN (k). (2)

The symmetric (standard) RIP constant R(k, n,N) is then defined by

R(k, n,N) := max{L(k, n,N), U(k, n,N)}. (3)
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We refer to the first argument of the RIP constants, k, as the support size of the RIP constant. In the
analysis of sparse approximation algorithms, intuition and aesthetics have led to the desire to reduce the
support size of the RIP constants to 2k. Two important facts have played a substantial role in motivating
the search for RIP statements with support size 2k. First, in order to correctly recover a k-sparse signal, the
measurement matrix Amust be able to distinguish between any two signals in χN (k), therefore, necessitating2

that L(2k, n,N) < 1. Secondly, the early sufficient conditions [10, 11] for successful k-sparse recovery via
`1-regularization involved various support sizes. The results were eventually overshadowed by Candès’s
elegant sufficient RIP condition with support size of 2k, i.e. R(2k, n,N) <

√
2 − 1, [9]. When analyzing

alternative sparse approximation algorithms, qualitative comparisons to Candès’s result motivate a desire to
state results in terms of RIP constants with support size 2k.

However, reducing the support size of an RIP constant is not necessarily quantitatively advantageous.
Typically, sufficient conditions appear in the literature in the form R(bk, n,N) < α implies success of exact
sparse recovery for a certain reconstruction algorithm. Since the RIP and ARIP constants are increasing as
a function of their support size, R(ak, n,N) ≤ R(bk, n,N) for a ≤ b, it is clear that there are two ways to
weaken this condition. First, one could increase α, the bound on R(bk, n,N). Second, one could decrease
the support size while keeping α fixed: R(ak, n,N) < α for a < b. However, reducing the support size
while simultaneously reducing the bound α is not necessarily quantitatively advantageous and is completely
dependent on the growth rate of the RIP constants (as the support size grows) for a chosen matrix ensemble.
Moreover, having a matrix ensemble where the RIP constants grow rapidly is certainly not desirable when
trying to satisfy conditions of the form R(bk, n,N) < α for large values of k in proportion to n.

As the behavior of the RIP constants is dependent on the matrix ensemble, we focus on matrices from
the Gaussian ensemble, i.e. matrices whose entries are selected i.i.d. from the normal distribution N (0, 1/n).
In this article, we employ the phase transition framework advocated by Donoho et al. [16, 17, 18, 19]
and subsequently applied to the RIP [1, 2, 3]. The phase transition framework provides a method for
quantitative comparison of results involving the RIP. The quantitative comparisons demonstrate that the
desire for qualitative comparisons obtained by reducing the support size often leads to smaller regions where
recovery can be guaranteed.

1.1. The Phase Transition Framework

Computing the RIP constants for a specific matrix is a combinatorial problem and therefore intractable
for large matrices. In order to make quantitative comparisons, bounds on the probability density function
for the RIP constants have been derived for various random matrix ensembles [1, 11, 12, 15]. The current
best known bounds3 for Gaussian matrices were derived in [1] and are denoted L(δ, ρ),U(δ, ρ),R(δ, ρ) where
δ and ρ define a proportional growth among the problem parameters (k, n,N).

Definition 2 (Proportional-Growth Asymptotic). A sequence of problem sizes (k, n,N) is said to grow
proportionally if, for (δ, ρ) ∈ [0, 1]2, n

N → δ and k
n → ρ as n→∞.

The following is an adaptation of [1, Thm. 1].

Theorem 1 (Blanchard, Cartis, Tanner [1]). Fix ε > 0. Under the proportional-growth asymptotic, Defini-
tion 2, sample each n × N matrix A from the Gaussian ensemble. Let L(δ, ρ) and U(δ, ρ) be defined as in
[1, Thm. 1]. Define R(δ, ρ) = max{L(δ, ρ),U(δ, ρ)}. Then for any ε > 0, as n→∞,

Prob [L(k, n,N) < L(δ, ρ) + ε]→ 1, (4)

Prob [U(k, n,N) < U(δ, ρ) + ε]→ 1, (5)

and Prob [R(k, n,N) < R(δ, ρ) + ε]→ 1. (6)

2An advantage of the asymmetric formulation of the RIP is that this is truly a necessary condition as opposed to the often
stated, but not necessary requirement R(2k, n,N) < 1.

3Extensive empirical testing show these bounds are no more than twice the empirically observed RIP constants for all values
of δ. For a detailed discussion, see [1].
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The proof of this result appears in [1] with a more thorough explanation of its application to the phase
transition framework. Briefly, the phase transition framework is applied to results obtained via the RIP in the
following manner. For a given sparse approximation algorithm, for example `1-regularization, CoSaMP, or
Iterative Hard Thresholding (IHT), a sufficient condition is derived from an RIP analysis of the measurement
matrix A. This sufficient condition can be arranged to take the form µ(k, n,N) < 1 where µ(k, n,N) is a
function of the ARIP constants, L(·, n,N) and U(·, n,N), or, in a symmetric RIP analysis, it is a function of
R(·, n,N). As the RIP constants are bounded by Theorem 1, one obtains a bound, µ(δ, ρ) for the function
µ(k, n,N) as n → ∞ with k

n → ρ and n
N → δ. The lower bound on the phase transition for the associated

sufficient condition for exact recovery of every x ∈ χN (k) is then determined by a function ρS(δ) which is
the solution to the equation µ(δ, ρ) = 1. The curve defined by ρS(δ) graphically displays the lower bound
on the strong (exact recovery of all k-sparse signals) phase transition defined by the sufficient condition
µ(k, n,N) < 1. When A is a Gaussian matrix of size n×N and the ordered pair ( n

N ,
k
n ) falls below the phase

transition curve, then with overwhelming probability on the draw of A, the sufficient condition is satisfied
and the algorithm will exactly recover every x ∈ χN (k), i.e. the algorithm exactly recovers all k-sparse
signals.

In this letter, we utilize the phase transition framework to compare existing sufficient conditions for
exact k-sparse recovery using matrices drawn from the Gaussian ensemble. We say a condition is weaker
when it is satisfied with overwhelming probability (i.e. probability of the complementary event vanishing
exponentially in n) by a larger portion of matrices drawn from the Gaussian ensemble. This is represented by
a higher phase transition curve associated with the condition as a higher phase transition curve carves out a
larger region of the phase space where exact k-sparse recovery is guaranteed with overwhelming probability.
Likewise, we say a condition is stronger if the associated phase transition curve is lower and therefore defines
a smaller region where exact k-sparse recovery is guaranteed with overwhelming probability.

1.2. Organization and Notation

In the following, we present three instances from the literature where reducing the support sizes of the
RIP constants results in a stronger sufficient condition for sparse signal recovery. By using the quantitative
comparisons available through the phase transition framework, outlined in Sec. 1.1, we examine three cases
where larger RIP support sizes yield weaker sufficient conditions for exact k-sparse recovery with Gaussian
measurement matrices. These three examples are certainly not exhaustive, but suffice in conveying the idea.

(i) For Compressive Sampling Matching Pursuit (CoSaMP) [22], Needell and Tropp apply a bound on the
growth rate of RIP constants to reduce the support size of the RIP constants from 4k to 2k resulting
in a significantly stronger sufficient condition. (Sec. 2)

(ii) The currently accepted state of the art sufficient condition for `1-regularization obtained by Foucart
and Lai [21] involves RIP constants with support size 2k. However, a sufficient condition involving
RIP constants with support sizes 11k and 12k yields a weaker sufficient condition for exact k-sparse
recovery via `1-regularization. (Sec. 3)

(iii) A technique of splitting support sets introduced by Blumensath and Davies [5] allows a reduction of
the support size of RIP constants in the analysis of Iterative Hard Thresholding (IHT). In this case,
the sufficient conditions for exact k-sparse recovery via IHT are again weaker with the larger support
size of the RIP constants. (Sec. 4)

In the following, if S is an index set, then |S| denotes the cardinality of S, AS represents the submatrix
of A obtained by selecting the columns indexed by S, and xS is the set of entries of x indexed by S. Finally,
even when not explicitly stated, it is assumed throughout that the support size of an RIP constant is no
larger than the number of measurements, e.g. if A is of size n × N with RIP constant R(mk, n,N), we
implicitly assume mk ≤ n < N .
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Figure 1: CoSaMP: (a) lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices; R(δ, 4ρ) < .1
(solid), R(δ, 2ρ) < .025 (dash-dash). (b) the ratio of the two curves in (a).

2. A Simple Example

A straightforward and dramatic example of a weaker condition with a larger RIP support size is found
in the analysis of the greedy algorithm CoSaMP [22]. In this work, Needell and Tropp provide a sufficient
condition for guaranteed recovery of k-sparse vectors, namely

R(4k, n,N) < 0.1. (7)

The authors also provide a bound on the growth rate of RIP constants, R(ck, n,N) ≤ c · R(2k, n,N), [22,
Cor. 3.4]. For qualitative comparison to current results for `1-regularization, such as Candès’s R(2k, n,N) <√

2− 1, [9], Needell and Tropp apply their bound on the growth of RIP constants to obtain the condition

R(2k, n,N) < 0.025, (8)

which is therefore also sufficient for the exact recovery of k-sparse signals [22, Remark 2.2]. Lacking a
quantitative comparison of the two conditions, the authors do not claim that reducing the support size is
advantageous, only that such a reduction is still sufficient for CoSaMP to exactly recover k-sparse signals.
However, the condition involving the support size 4k, (7), is considerably weaker than the condition with
support size 2k, (8), when applied to Gaussian random matrices. By employing a bound (described in
Sec. 1.1) R(δ, ρ) as n → ∞ with n

N → δ, k
n → ρ, lower bounds on the phase transition for exact k-sparse

recovery via CoSaMP are obtained.
In Fig. 1(a), lower bounds on the phase transition are displayed for the two conditions. With over-

whelming probability Gaussian matrices A of size n×N will satisfy the sufficient conditions for CoSaMP to
exactly recover every x ∈ χN (k) provided the ordered pair (δ, ρ) ≡ ( n

N ,
k
n ) falls below the associated phase

transition curve in the phase space [0, 1]2. For Gaussian matrices, R(4k, n,N) < 0.1 is a superior bound to
R(2k, n,N) < 0.025 as the region of the phase space representing matrices satisfying (7) with high proba-
bility has greater than 9.7 times the area of the phase space region determined by (8). Moreover, Fig. 1(b)
shows that the phase transition curve for the weaker (4k) condition is between 8.96 and 9.83 times higher
depending on δ. This implies that the condition with larger support size guarantees CoSaMP recovery of
signals with roughly nine times the number of nonzero entries as the signals guaranteed to be recovered by
the sufficient condition with the reduced support size.

4



3. The RIP for `1-regularization

In this section we examine the current knowledge obtained from an RIP analysis for exact recovery of
k-sparse signals via `1-regularization. The problem of finding the sparsest signal x equipped only with the
measurement matrix A and the measurements y = Ax is, in general, a combinatorial problem. It is now well
understood that, under the right conditions, the solution to the tractable `1-regularization,

min ‖x‖1 subject to y = Ax, (9)

is the unique, sparsest signal satisfying y = Ax.
Currently, it is generally accepted that the state of the art sufficient condition4 obtained by RIP analysis

for `1-regularization was proven by Foucart and Lai [21].

Theorem 2 (Foucart, Lai [21]). For any matrix A of size n × N with ARIP constants L(2k, n,N) and
U(2k, n,N), for 2k ≤ n < N , if µfl(k, n,N) < 1 where

µfl(k, n,N) :=
1 +
√

2

4

(
1 + U(2k, n,N)

1− L(2k, n,N)
− 1

)
, (10)

then `1-regularization will exactly recover every x ∈ χN (k).

Motivated by the fact that the symmetric RIP constants are not invariant to scaling the matrix, Theorem 2
is proven with an asymmetric RIP analysis. Their method of proof also resulted in a slight improvement
to the symmetric RIP result of Candès mentioned above. With R(2k, n,N) defined as in (3), a sufficient
condition for exact recovery of every x ∈ χN (k) from `1-regularization is R(2k, n,N) < 2

3+
√
2
≈ 0.4531.

Note that Theorem 2 (and the result for R(2k, n,N)) involve RIP support sizes of 2k. One of the early
sufficient conditions for exact recovery of every x ∈ χN (k) by solving (9), namely 3R(4k, n,N)+R(3k, n,N) <
2, was obtained by Candès, Romberg, and Tao [10] from an RIP analysis. Chartrand [13] extended this result
to essentially arbitrary support sizes and to `q-regularization for q ∈ (0, 1]. Chartrand’s extension was further
studied by Saab and Yilmaz [23, 24]. Here, the result is stated with an asymmetric RIP analysis following
the proof in [13] which, in turn, is an adaptation of Candès, Romberg, and Tao’s proof [10].

Theorem 3. Suppose k ∈ N+ and b > 2 with bk ∈ N+. For any matrix A of size n×N with ARIP constants
L([b+ 1]k, n,N) and U(bk, n,N) for [b+ 1]k ≤ n < N , if µbt(k, n,N ; b) < 1 where

µbt(k, n,N ; b) :=
bL([b+ 1]k, n,N) + U(bk, n,N)

b− 1
, (11)

then `1-regularization will exactly recover every x ∈ χN (k).

Proof. Let x ∈ χN (k) and y = Ax. Suppose z is a solution to (9). Define h = z − x. We demonstrate that
h = 0. Let T0 = supp(x) and arrange the elements of |h| on the complement, T c

0 , in decreasing order using
the partition T c

0 = T1 ∪T2 ∪ · · · ∪TJ with |Tj | = bk for j = 1, . . . , J − 1 and |TJ | ≤ bk. Denote T01 = T0 ∪T1.
Counting arguments and norm comparisons taken directly from [13] provide the following inequalities,∥∥hT c

0

∥∥
1
≤ ‖hT0

‖1 , (12)

‖AT01hT01‖2 ≤
J∑

j=2

∥∥ATjhTj

∥∥
2
, (13)

J∑
j=2

∥∥hTj

∥∥
2
≤ 1√

bk

∥∥hT c
0

∥∥
1
. (14)

4This sufficient condition on R(2k, n,N) was subsequently improved by Foucart[20] and by Cai et al.[7].
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Now since |T01| = |T0|+ |T1| = [b+ 1]k and |Tj | ≤ bk for each j ≥ 1, then by Def. 1,

‖AT01
hT01
‖2 ≥

√
1− L([b+ 1]k, n,N) ‖hT01

‖2 (15)

and
∥∥ATj

hTj

∥∥
2
≤
√

1 + U(bk, n,N)
∥∥hTj

∥∥
2
. (16)

Therefore, inserting (15) and (16) into (13) yields

‖hT01‖2 ≤

√
1 + U(bk, n,N)

1− L([b+ 1]k, n,N)

J∑
j=2

∥∥hTj

∥∥
2
. (17)

Combining (12), (14), (17), and the standard relationship between norms, we then have

‖hT01‖2 ≤

√
1 + U(bk, n,N)

1− L([b+ 1]k, n,N)

1√
bk
‖hT0‖1 ≤

√
1 + U(bk, n,N)

1− L([b+ 1]k, n,N)

√
k

bk
‖hT0‖2

≤

√
1 + U(bk, n,N)

b− bL([b+ 1]k, n,N)
‖hT01

‖2 . (18)

Squaring and rearranging (18),(
[b− 1]− [bL([b+ 1]k, n,N) + U(bk, n,N)]

)
‖hT01

‖22 ≤ 0. (19)

The hypothesis µ(k, n,N ; b) < 1 ensures the left hand side of (19) is nonnegative and zero only when
‖hT01

‖2 = 0. Therefore, h = 0 implying z = x.

Following the framework described in Sec. 1.1 and more formally developed in [1], we restate Theorems 2
and 3 in the language of phase transitions for Gaussian matrices. Clearly, (11) defines a family of functions
indexed by b > 2 with bk ∈ N+. Applying the bounds defined in Theorem 1 to (10) and (11), we obtain the
functions

µfl(δ, ρ) :=
1 +
√

2

4

(
1 + U(δ, 2ρ)

1− L(δ, 2ρ)
− 1

)
and µbt(δ, ρ; b) :=

bL(δ, [b+ 1]ρ) + U(δ, bρ)

b− 1
. (20)

Now define ρflS (δ) as the solution to µfl(δ, ρ) = 1. Similarly, define ρbtS (δ; b) as the solution to µbt(δ, ρ; b) = 1.

The functions ρflS (δ) and ρbtS (δ; b) define regions of the phase space which guarantee sparse recovery. We
collect the phase transition formulation of Thms. 2 and 3 in Thm. 4 (i) and (ii), respectively.

Theorem 4. Fix ε > 0. Under the proportional-growth asymptotic, n
N → δ and k

n → ρ as n → ∞, sample
each n×N matrix A from the Gaussian ensemble. Then with overwhelming probability every x ∈ χN (k) is
exactly recovered by `1-regularization (9), provided one of the following conditions is satisfied:

(i) ρ < (1− ε)ρflS (δ);

(ii) ρ < (1− ε)ρbtS (δ; b).

ρflS (δ) is displayed as the dash-dash curve in Fig. 2(a). The highest phase transition curves are obtained
with b ≈ 11. No single value of b provides a phase transition curve that is highest for all values of δ. For
example, ρbtS (δ; 10) > ρbtS (δ; 11) for δ ∈ [0, .44] and ρbtS (δ; 10) < ρbtS (δ; 11) for δ ∈ [.45, 1]. ρbtS (δ; 11) is displayed
as the solid curve in Fig. 2(a). The heavier weighting of the ARIP bound, L(δ, [b+ 1]ρ), which for Gaussian
matrices is less than 1 with probability 1, permits b to grow well beyond 2. Although intuitively murky
on the surface, support sizes of 11k and 12k provide a larger region of Gaussian matrices which provably
guarantee exact k-sparse recovery from an RIP analysis. Figure 2(b) shows an improvement by a factor
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Figure 2: `1-regularization: (a) lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices;

ρbtS (δ; 11) (solid) and ρflS (δ) (dash-dash). (b) The improvement ratio
ρbtS (δ;11)

ρ
fl
S

(δ)
.

ranging from 1.11 to 1.38. By using a quantitative comparison, we see that the weakest RIP condition is not
Thm. 2, rather a weaker RIP sufficient condition for exact recovery of every x ∈ χN (k) via `1-regularization,
at least for Gaussian matrices commonly used in compressed sensing, is

11L(12k, n,N) + U(11k, n,N) < 10. (21)

In a related direction, Saab, Chartrand and Yilmaz [23] observed that, for `q-regularization with q ∈ (0, 1],
larger support sizes provide improved constants amplifying the error in the noisy or compressible setting.
Saab and Yilmaz [24] further discuss a sufficient condition for `q-regularization, q ∈ (0, 1], which is weaker
than Thm. 2 as the support size of the RIP constants increases.

4. Splitting Support Sets

In [5], Blumensath and Davies demonstrate how the introduction of an adaptive step-size into the Iterative
Hard Thresholding algorithm leads to better guarantees of stability. A further qualitative contribution of
the paper is to reduce the support size of the RIP constants in the convergence condition from 3k to 2k. We
might also then ask whether the new condition represents a quantitative improvement.

This reduction in support size is essentially achieved by a single step in the proof of [5, Thm. 4]. Given
the previous iterate xl, we seek to identify some constant η such that

‖A∗SAT (x− xl)T ‖2 ≤ η‖(x− xl)T ‖2,

where S and T are disjoint subsets of maximum cardinality 2k and k respectively. It is a straightforward
consequence of the RIP that η can be taken to be R(3k, n,N), and this choice of η is used by Blumensath
and Davies in [4, Lemma 2] to derive for IHT the convergence condition R(3k, n,N) < 1/

√
8. However,

the authors observe in [5] that one may split the set S into two disjoint subsets each of size k, and sub-
sequently apply the triangle inequality. In the symmetric setting this leads to the alternative choice of
η =

√
2R(2k, n,N). Though the method of proof in [5] varies significantly from that in [4] in other ways,

such as the switch to an adaptive step-size and a generalization to the asymmetric setting, we can nonetheless
examine the effect of the support set splitting alone. In this case, it is easy to adapt the proof of [4, Corollary
4] to show that the alternative convergence condition is R(2k, n,N) < 1/4. We have thus reduced the RIP
support from 3k to 2k at the expense of decreasing the bound on R(2k, n,N) by 1/

√
2.
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We may compare the two conditions for Gaussian random matrices by means of the bounds defined in
Thm. 1. The resulting lower bounds on the exact k-sparse recovery phase transition are displayed in Fig. 3.
For Gaussian matrices, the convergence condition derived by support set splitting is in fact stronger, showing
that there is no quantitative advantage gained by splitting the support set in this manner.

In order to see why this is likely to be the case, let us define η(s, t, n,N) to be the smallest η such that

‖A∗SAT vT ‖2 ≤ η‖vT ‖2 (22)

holds for all disjoint sets S and T with cardinality s and t, respectively. The desire to state conditions in
terms of RIP constants then typically leads to the use of the bound

η(s, t, n,N) ≤ R(s+ t, n,N), (23)

even though this bound is not necessarily sharp.
Now consider the situation for IHT where the set S is of cardinality ms so that we may split S into m

equally-sized, disjoint subsets Si such that S =
⋃m

i=1 Si. Then, since the Si are disjoint, we have

‖A∗SAT vT ‖22 =

m∑
i=1

∥∥A∗Si
AT vT

∥∥2
2
≤ m · (η(s, t, n,N)‖vT ‖2)

2
. (24)

By (22), η(ms, t, n,N) is the smallest number satisfying ‖A∗SAT vT ‖2 ≤ η‖vT ‖2 since |S| = ms and
|T | = t. Therefore, η(ms, t, n,N) ≤

√
m · η(s, t, n,N). In other words, splitting the support so as to replace

η(ms, t, n,N) with the upper bound
√
m · η(s, t, n,N) can only make the condition stronger, and certainly

never give a quantitative improvement. It comes as no surprise, then, when we employ the bound (23) and
compare the RIP conditions by means of Gaussian RIP bounds, that we obtain a lower phase transition.
To summarize, while this technique achieved Blumensath and Davies’s desired goal of reducing the support
sizes, it could never be expected to offer a real quantitative advantage.

5. Conclusion

Although a strict condition, the RIP is a versatile tool for analyzing sparse approximation algorithms. The
desire for qualitative comparison of various results obtained from an RIP analysis motivates a reduction in
the support size of the RIP constants as evidenced by the literature. However, following the same methods of
proof and quantitatively comparing the resulting sufficient conditions within the phase transition framework
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Figure 4: Lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices: (a) R(δ, 2ρ) < .4531

(solid), R(δ, ρ) < .307 (dash-dash). (b) ρcwxS (δ) (dash-dot); ρbtS (δ) (solid); ρflS (δ) (dash-dash).

shows that the smallest support size is not necessarily better than larger support sizes. This is certainly
dependent on the method of proof, and it is plausible that improved proof techniques using the RIP may
lead to weaker sufficient conditions with reduced support sizes in the future. Similarly, statements involving
RIP constants are crucially dependent on the matrix ensemble chosen. Meanwhile, given that a quantitative
method of comparison exists, namely the phase transition framework advocated by Donoho et al., such
support size reductions in RIP constants can and should be examined for efficacy.

Epilogue

During the review process of this letter, the authors became aware of work by Cai et al. [6, 7] on sufficient
RIP conditions for `1-regularization to exactly recover every x ∈ χN (k). Cai et al. made improvements on
the upper bound for R(2k, n,N) and announced what appears to be the first result involving a restricted
isometry constant with support size k, namely R(k, n,N) < .307. As discussed in this letter, decreasing
the support size of the RIP constants while decreasing the upper bound is not necessarily an improvement.
For matrices from the Gaussian ensemble, R(k, n,N) < .307 is stronger than even the symmetric version of
Thm. 2, R(2k, n,N) < .4531. See Fig. 4(a).

This reduction in support size was obtained by extending the work of Candès et al. [10, 11] and Foucart
and Lai [21]. Two inequalities, the Shifting Inequality [7] and the Square Root Lifting Inequality5 [6] were
applied and a modified partitioning of the index set was performed to invoke these inequalities. The authors
argue that their ability to decrease the support size of the RIP constants has lead to weaker conditions. The
reduced support sizes highlighted in [6, 7] do not provide the weakest conditions from their analysis.

The techniques used by Cai et al. in both [6, 7] are quite valuable when applied to an ARIP analysis
and without concern for the support size. Such an analysis leads to a family of sufficient conditions which
further increase the lower bound on the phase transition for Gaussian matrices. For example, following [7]
with an ARIP analysis produces the sufficient condition

µcwx(k, n,N) := L(2k, n,N) +
L(6k, n,N) + U(6k, n,N)

4
< 1.

5The Square Root Lifting Inequality is essentially the same as the support set splitting of Blumenseth and Davies described
in Sec. 4; as such it poses the same quantitative disadvantages.
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In Fig. 4(b), the phase transition curve defined by ρcwx
S (δ) where µcwx (δ, ρcwx

S (δ)) ≡ 1 is shown with the two
curves from Fig. 2.

Acknowledgments

The authors would like to thank Edinburgh Compressed Sensing (E-CoS) and the referee for helpful
suggestions which improved this letter.

References

[1] Jeffrey D. Blanchard, Coralia Cartis, and Jared Tanner. Compressed sensing: How sharp is the restricted
isometry property? submitted, 2009.

[2] Jeffrey D. Blanchard, Coralia Cartis, and Jared Tanner. Phase transitions for restricted isometry
properties. In Proceedings of Signal Processing with Adaptive Sparse Structured Representations, 2009.

[3] Jeffrey D. Blanchard, Coralia Cartis, Jared Tanner, and Andrew Thompson. Phase transitions for
greedy sparse approximation algorithms. submitted, 2009.

[4] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sensing. Appl.
Comput. Harmon. Anal., 27(3):265–274, 2009.

[5] Thomas Blumensath and Mike E. Davies. Normalised iterative hard thresholding; guaranteed stability
and performance. IEEE J. Sel. Topics Sig. Proc., 2009. in press.

[6] T. Tony Cai, Lie Wang, and Guangwu Xu. New bounds for restricted isometry constants. submitted,
online arXiv:0911.1564v1, 2009.

[7] T. Tony Cai, Lie Wang, and Guangwu Xu. Shifting inequality and recovery of sparse signals. IEEE
Trans. Sig. Proc., 2009. in press, doi:10.1109/TSP.2009.2034936.

[8] Emmanuel J. Candès. Compressive sampling. In International Congress of Mathematicians. Vol. III,
pages 1433–1452. Eur. Math. Soc., Zürich, 2006.
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